The Babase Pocket Reference Guide

A Technical Specification Summary
This material is based upon work supported by the National Science Foundation under Grant Nos. 0323553 and 0323596.
COLLABORATORS

<table>
<thead>
<tr>
<th>ACTION</th>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITTEN BY</td>
<td>Karl O. Pinc, PhD. Jeanne Altmann, PhD. Susan C. Alberts, and Leah Gerber</td>
<td>February 14, 2022</td>
</tr>
<tr>
<td></td>
<td>Leah Gerber</td>
<td>February 14, 2022</td>
</tr>
<tr>
<td></td>
<td>Anne Hubbard</td>
<td>February 14, 2022</td>
</tr>
<tr>
<td></td>
<td>Karl Pinc</td>
<td>February 14, 2022</td>
</tr>
</tbody>
</table>

REVISION HISTORY

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

1 Babase Summarized 1

2 The Babase ER Diagrams 1

3 The Babase Views 24

3.1 The ACTOR_ACTEES View

3.2 The ANESTH_STATS View

3.3 The BODYTEMP_STATS View

3.4 The CENSUS_DEMOG and CENSUS_DEMOG_SORTED Views

3.5 The CHEST_STATS View

3.6 The CROWN RUMP_STATS View

3.7 The CYCLES_SESKINS and CYCLES_SESKINS_SORTED Views

3.8 The CYCPOINTS_CYCLES and CYCPOINTS_CYCLES_SORTED Views

3.9 The DSAMPLES View

3.10 The DEMOG_CENSUS and DEMOG_CENSUS_SORTED Views

3.11 The DENT_CODES View

3.12 The DENT_SITES View

3.13 The INTERACT and INTERACT_SORTED Views

3.14 The LOCATIONS_FREE View

3.15 The MATERNITIES View

3.16 The MIN_MAXS View

3.17 The MIN_MAXS_SORTED View

3.18 The MPI_EVENTS View

3.19 The MTD_CYCLES View

3.20 The NUCACID_CONCS View

3.21 The NUCACIDS View

3.22 The NUCACIDS_W_CONC View

3.23 The PARENTS View

3.24 The PCSKINS_SORTED View

3.25 The PCV_STATS View

3.26 The POINTS and POINTS_SORTED Views

3.27 The POTENTIAL_DADS View

3.28 The PROPORTIONAL_RANKS View

3.29 The QUADS View

3.30 The SEXSKINS_CYCLES and SEXSKINS_CYCLES_SORTED Views

3.31 The SWERB view

3.32 The SWERB_DEPARTS view
3.33 The SWERB_LOC_GPS_XY view .. 76
3.34 The SWERB_LOCS view .. 77
3.35 The SWERB_UPLOAD view ... 78
3.36 The TISSUES View ... 79
3.37 The ULNA_STATS View .. 80
3.38 The TESTES_ARC_STATS View ... 83
3.39 The TESTES_DIAM_STATS View .. 86
3.40 The WP_DETAILS_AFFECTEDPARTS View 88
3.41 The WP_HEALS View .. 89
3.42 The WP_REPORTS_OBSERVERS View 94

4 Views Which Add Gid To Tables .. 94
 4.1 The BIRTH_GRP View .. 95
 4.2 The ENTRYDATE_GRP View .. 95
 4.3 The STATDATE_GRP View ... 96
 4.4 The CONSORTDATES_GRP View ... 96
 4.5 The CYCGAPDAYS_GRP View ... 97
 4.6 The CYCGAPS_GRP View ... 97
 4.7 The CYCSTATS_GRP View .. 98
 4.8 The DARTINGS_GRP View .. 98
 4.9 The DISPERSEDATES_GRP View .. 99
 4.10 The MATUREDATES_GRP View .. 99
 4.11 The MDINTERVAls_GRP View ... 100
 4.12 The MMINTERVAls_GRP View ... 100
 4.13 The PCSKINS_GRP View .. 101
 4.14 The RANKDATES_GRP View ... 101
 4.15 The REPSTATS_GRP View .. 102
List of Figures

1. Key to the Babase Entity Relationship Diagrams 1
2. Babase Group Membership Entity Relationship Diagram 3
3. Babase Life Events Entity Relationship Diagram 5
4. Babase Sexual Cycle Entity Relationship Diagram 8
5. Babase Sexual Cycle Day-To-Day Tables Entity Relationship Diagram 9
6. Babase Social Interactions Entity Relationship Diagram 10
7. Babase Multiparty Interactions Entity Relationship Diagram 11
8. Babase Darting Logistics and Morphology Entity and Relationship Diagram ... 12
9. Babase Darting Physiology Entity and Relationship Diagram 13
10. Babase Darting Samples Entity and Relationship Diagram 14
11. Babase Darting Teeth and Ticks Entity and Relationship Diagram 15
12. Babase Inventory Entity Relationship Diagram 16
13. Babase Physical Traits Hormone Data Entity Relationship Diagram 17
14. Babase Physical Traits Genetic Hybrid Score Data Entity Relationship Diagram 18
15. Babase Physical Traits Wounds and Pathologies Data Entity Relationship Diagram 19
16. Babase SWERB Core Tables Entity Relationship Diagram 20
17. Babase SWERB Grove/Waterhole Location Tables Entity Relationship Diagram 21
20. Warning Sub-System Entity Relationship Diagram 24
21. Query Defining the ACTOR_ACTEES View 25
22. Entity Relationship Diagram of the ACTOR_ACTEES View 26
23. Query Defining the ANESTH_STATS View 26
24. Entity Relationship Diagram of the ANESTH_STATS View 27
25. Query Defining the BODYTEMP_STATS View 27
26. Entity Relationship Diagram of the BODYTEMP_STATS View 28
27. Query Defining the CENSUS_DEMOG View 28
28. Entity Relationship Diagram of the CENSUS_DEMOG View 28
29. Query Defining the CHEST_STATS View 29
30. Entity Relationship Diagram of the CHEST_STATS View 29
31. Query Defining the CROWNRUMP_STATS View 30
32. Entity Relationship Diagram of the CROWNRUMP_STATS View 30
33. Query Defining the CYCLES_SEXSKINS View 30
34. Entity Relationship Diagram of the CYCLES_SEXSKINS View 31
35. Query Defining the CYCPOINTS_CYCLES View 31
36. Entity Relationship Diagram of the CYCPOINTS_CYCLES View 31
37. Query Defining the DSAMPLES View .. 33
38 Query Defining the DEMOG_CENSUS View .. 34
39 Entity Relationship Diagram of the DEMOG_CENSUS View 34
40 Query Defining the DENT_CODES View ... 36
41 Entity Relationship Diagram of the DENT_CODES View 37
42 Query Defining the DENT_SITES View ... 39
43 Entity Relationship Diagram of the DENT_SITES View 40
44 Query Defining the INTERACT View ... 41
45 Entity Relationship Diagram of the INTERACT View .. 41
46 Query Defining the LOCATIONS_FREE View ... 42
47 Entity Relationship Diagram of the LOCATIONS_FREE View 42
48 Query Defining the MATERNITIES View ... 43
49 Entity Relationship Diagram of the MATERNITIES View 44
50 Query Defining the MIN_MAXS View ... 45
51 Entity Relationship Diagram of the MIN_MAXS View .. 46
52 Query Defining the MIN_MAXS_SORTED View ... 47
53 Entity Relationship Diagram of the MIN_MAXS_SORTED View 48
54 Query Defining the MPI_EVENTS View ... 50
55 Entity Relationship Diagram of the MPI_EVENTS View 51
56 Query Defining the MTD_CYCLES View .. 52
57 Entity Relationship Diagram of the MTD_CYCLES View 53
58 Query Defining the NUCACID_CONCS View ... 54
59 Entity Relationship Diagram of the NUCACID_CONCS View 54
60 Query Defining the NUCACIDS View ... 55
61 Entity Relationship Diagram of the NUCACIDS View 56
62 Query Defining the NUCACIDS_W_CONC View ... 58
63 Entity Relationship Diagram of the NUCACIDS_W_CONC View 59
64 Query Defining the PARENTS View .. 60
65 Entity Relationship Diagram of the PARENTS View ... 61
66 Query Defining the PCSKINS_SORTED View .. 61
67 Entity Relationship Diagram of the PCSKINS_SORTED View 62
68 Query Defining the PCV_STATS View ... 62
69 Entity Relationship Diagram of the PCV_STATS View 62
70 Query Defining the POINTS View ... 63
71 Entity Relationship Diagram of the POINTS View ... 63
72 Query Defining the POTENTIAL_DADS View .. 65
73 Entity Relationship Diagram of the foundation of the POTENTIAL_DADS View ... 66
74 Entity Relationship Diagram of that portion of the POTENTIAL_DADS View which places the mother and potential father in the same group during the fertile period ... 67
75 Entity Relationship Diagram of that portion of the POTENTIAL_DADS View having easily computed columns ... 68
Query Defining the PROPORTIONAL_RANKS View

Entity Relationship Diagram of the PROPORTIONAL_RANKS View

Query Defining the QUADS View

Entity Relationship Diagram of the QUADS View

Query Defining the SEXSKINS_CYCLES View

Entity Relationship Diagram of the SEXSKINS_CYCLES View

Query Defining the SWERB View

Entity Relationship Diagram of the SWERB View

Query Defining the SWERB_DEPARTS View

Entity Relationship Diagram of the SWERB_DEPARTS View

Query Defining the SWERB_LOC_GPS_XY View

Entity Relationship Diagram of the SWERB_LOC_GPS_XY View

Query Defining the SWERB_LOCS View

Entity Relationship Diagram of the SWERB_LOCS View

Query Defining the SWERB_UPLOAD View

Entity Relationship Diagram of the SWERB_UPLOAD View

Query Defining the TISSUES View

Entity Relationship Diagram of the TISSUES View

Query Defining the ULNA_STATS View

Entity Relationship Diagram of the ULNA_STATS View

Query Defining the TESTES_ARC_STATS View

Entity Relationship Diagram of the TESTES_ARC_STATS View

Query Defining the TESTES_DIAM_STATS View

Entity Relationship Diagram of the TESTES_DIAM_STATS View

Query Defining the WP_DETAILS_AFFECTEDPARTS View

Entity Relationship Diagram of the WP_DETAILS_AFFECTEDPARTS View

Query Defining the WP_HEALS View

Entity Relationship Diagram of the WP_HEALS View, Overall

Entity Relationship Diagram of the WP_HEALS View for rows with an update to a wound/pathology report

Entity Relationship Diagram of the WP_HEALS View for rows with an update to a wound/pathology cluster

Entity Relationship Diagram of the WP_HEALS View for rows with an update to an affected body part

Query Defining the WP_REPORTS_OBSERVERS View

Entity Relationship Diagram of the WP_REPORTS_OBSERVERS View

Query Defining the BIRTH_GRP View

Entity Relationship Diagram of the BIRTH_GRP View

Query Defining the ENTRYDATE_GRP View

Entity Relationship Diagram of the ENTRYDATE_GRP View

Query Defining the STATDATE_GRP View
115 Entity Relationship Diagram of the STATDATE_GRP View ... 96
116 Query Defining the CONSORTDATES_GRP View ... 96
117 Entity Relationship Diagram of the CONSORTDATES_GRP View 96
118 Query Defining the CYCGAPDAYS_GRP View .. 97
119 Entity Relationship Diagram of the CYCGAPDAYS_GRP View 97
120 Query Defining the CYCGAPS_GRP View ... 97
121 Entity Relationship Diagram of the CYCGAPS_GRP View ... 97
122 Query Defining the CYCSTATS_GRP View ... 98
123 Entity Relationship Diagram of the CYCSTATS_GRP View 98
124 Query Defining the DARTINGS_GRP View ... 98
125 Entity Relationship Diagram of the DARTINGS_GRP View 98
126 Query Defining the DISPERSEDATES_GRP View ... 99
127 Entity Relationship Diagram of the DISPERSEDATES_GRP View 99
128 Query Defining the MATUREDATES_GRP View ... 99
129 Entity Relationship Diagram of the MATUREDATES_GRP View 99
130 Query Defining the MDINTERVALS_GRP View ... 100
131 Entity Relationship Diagram of the MDINTERVALS_GRP View 100
132 Query Defining the MMINTERVALS_GRP View ... 100
133 Entity Relationship Diagram of the MMINTERVALS_GRP View 100
134 Query Defining the PCSKINS_GRP View .. 101
135 Entity Relationship Diagram of the PCSKINS_GRP View ... 101
136 Query Defining the RANKDATES_GRP View .. 101
137 Entity Relationship Diagram of the RANKDATES_GRP View 101
138 Query Defining the REPSTATS_GRP View .. 102
139 Entity Relationship Diagram of the REPSTATS_GRP View 102

List of Tables

1 The Main Babase Tables ... 2
2 The Warning Sub-System Tables .. 3
3 The Babase Support Tables ... 4
4 The Warning Sub-System Support Tables .. 5
5 The Babase Views .. 6
6 The table_GRP Views .. 7
1 Babase Summarized

Warning
Tables which have names ending in "_DATA" should not be used, there is always a view of the data in these tables that may be used in their place. Tables ending in "_DATA" may change in future Babase minor releases, breaking queries and programs which use the table. Use of the corresponding views will ensure compatibility with future Babase releases.

2 The Babase ER Diagrams

The BABASE Database

Figure 1: Key to the Babase Entity Relationship Diagrams

\footnote{At this time of this writing only males have data entered into \textit{RANKDATES} in Babase.}
Group Membership and Life Events

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATE_SNAMES in Babase</td>
<td>One row for each alternate name (sname) that has been rescinded</td>
</tr>
<tr>
<td>BIOGRAPH in Babase</td>
<td>Animal, including fetuses</td>
</tr>
<tr>
<td>CENSUS in Babase</td>
<td>Day each individual is (or is not) observed in a group</td>
</tr>
<tr>
<td>CONSORTIDATES in Babase</td>
<td>Male who has a known first consortship</td>
</tr>
<tr>
<td>DEMOG in Babase</td>
<td>Mention of an individual’s presence in a group within a field, textual note</td>
</tr>
<tr>
<td>DISPERSEDATES in Babase</td>
<td>Male who has left his maternal study group</td>
</tr>
<tr>
<td>GROUPS in Babase</td>
<td>Group (including solitary males)</td>
</tr>
<tr>
<td>MATUREDATES in Babase</td>
<td>Individual who is sexually mature</td>
</tr>
<tr>
<td>RANKDATES in Babase</td>
<td>Individual who has attained adult rank</td>
</tr>
</tbody>
</table>

Analyzed: Group Membership and Life Events

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAD_DATA in Babase</td>
<td>Offspring having a paternity analysis</td>
</tr>
<tr>
<td>MEMBERS in Babase</td>
<td>Day each individual is alive</td>
</tr>
<tr>
<td>RANKS in Babase</td>
<td>Month each individual is ranked in each group</td>
</tr>
</tbody>
</table>

Physical Traits

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP_AFFECTEDPARTS in Babase</td>
<td>Body part affected by a specific wound/pathology</td>
</tr>
<tr>
<td>WP_DETAILS in Babase</td>
<td>Wound or pathology cluster indicated on a report</td>
</tr>
<tr>
<td>WP_HEALUPDATES in Babase</td>
<td>Update on progress of wound/pathology healing</td>
</tr>
<tr>
<td>WP_REPORTS in Babase</td>
<td>Wound/pathology report</td>
</tr>
</tbody>
</table>

Analyzed: Physical Traits

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORMONE_KITS in Babase</td>
<td>Kit or protocol used to assay hormone concentration</td>
</tr>
<tr>
<td>HORMONE_PREP_DATA in Babase</td>
<td>Laboratory preparation performed on a sample in the specified series</td>
</tr>
<tr>
<td>HORMONE_PREP_SERIES in Babase</td>
<td>Series of preparations and assays performed on a sample</td>
</tr>
<tr>
<td>HORMONE_RESULT_DATA in Babase</td>
<td>Assay for hormone concentration in a sample</td>
</tr>
<tr>
<td>HORMONE_SAMPLE_DATA in Babase</td>
<td>Tissue sample used in hormone analysis</td>
</tr>
<tr>
<td>HYBRIDGENE_ANALYSES in Babase</td>
<td>Analysis of genetic hybrid scores</td>
</tr>
<tr>
<td>HYBRIDGENE_SCORES in Babase</td>
<td>Genetic hybrid score for an individual from an analysis</td>
</tr>
</tbody>
</table>

Sexual Cycles

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCGAPS in Babase</td>
<td>Female for each initiation or cessation of a continuous period of observation</td>
</tr>
<tr>
<td>CYCLES in Babase</td>
<td>Female’s cycle (complete or not)</td>
</tr>
<tr>
<td>CYCPOINTS in Babase</td>
<td>Mdate (mensural), Tdate (turgesence onset), or Ddate (deturgesence onset) date of each female</td>
</tr>
<tr>
<td>PCSKINS in Babase</td>
<td>PCS color of each female</td>
</tr>
<tr>
<td>PREGS in Babase</td>
<td>Time a female becomes pregnant</td>
</tr>
<tr>
<td>SEXSKINS in Babase</td>
<td>Analyses of sexual cycles, hormone concentrations, or other relevant measurements</td>
</tr>
</tbody>
</table>
Table 1: The Warning Sub-System Tables

<table>
<thead>
<tr>
<th>INTEGRITY_QUERIES in Babase:</th>
<th>One row for each</th>
</tr>
</thead>
<tbody>
<tr>
<td>query used to discover data integrity problems</td>
<td></td>
</tr>
</tbody>
</table>

| INTEGRITY_WARNINGS in Babase: | data integrity problem discovered by the warning sub-system |

Table 2: The Warning Sub-System Tables

Figure 2: Babase Group Membership Entity Relationship Diagram
General Support Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Id Column</th>
<th>Related Column(s)</th>
<th>One entry for every possible choice of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODYPARTS in Babase:</td>
<td>Bodypart</td>
<td>TICKS in Babase::Bodypart in Babase::BODYPARTS in Babase::Bodyregion in Babase::WP_AFFECTEDPARTS in Babase::Bodypart in Babase:</td>
<td>part of the body</td>
</tr>
<tr>
<td>LAB_PERSONNEL in Babase:</td>
<td>Initials</td>
<td>HYBRIDGEANALYSES in Babase::Analyzed_By in Babase::NUCACID_CREATORS in Babase::Creator in Babase::WBC_COUNTS in Babase::Counted_By in Babase:</td>
<td>person who generates data, usually in a lab setting</td>
</tr>
<tr>
<td>OBSERVERS in Babase:</td>
<td>Initials</td>
<td>SAMPLES in Babase::Observer in Babase::WREADINGS in Babase::WRperson in Babase::RGSETUPS in Babase::RGSPerson in Babase::CROWNRPUPS in Babase::CRObservers in Babase::CHESTS in Babase::Chobserver in Babase::ULNAS in Babase::Ulobserver in Babase::HUMERUSES in Babase::Huobserver in Babase::SWERB_OBSERVERS in Babase::Observer in Babase::</td>
<td>person who record observational data</td>
</tr>
<tr>
<td>OBSERVER_ROLES in Babase:</td>
<td>Initials</td>
<td>OBSERVERS in Babase::Role in Babase::OBSEVERS in Babase::SWERB_Observers_role in Babase::OBSEVERS in Babase::SWERB_Driver_role in Babase::SWERB_OBSERVERS in Babase::Role in Babase::</td>
<td>role way in which a person can be involved in the data collection process</td>
</tr>
<tr>
<td>UNKSNAMES in Babase:</td>
<td>Unksname</td>
<td>NEIGHBORS in Babase::Unksname in Babase: and the SWERB_UPLOAD in Babase::view</td>
<td>problem in identifying neighbor of focal during point sampling or in identifying a lone male in a SWERB other group observation</td>
</tr>
</tbody>
</table>

Group Membership and Life Events

<table>
<thead>
<tr>
<th>Table</th>
<th>Id Column</th>
<th>Related Column(s)</th>
<th>One entry for every possible choice of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTATUSES in Babase:</td>
<td>Bstatus</td>
<td>BIOGRAPH in Babase::Bstatus in Babase::</td>
<td>birthday estimation accuracy</td>
</tr>
<tr>
<td>CONFIDENCES in Babase:</td>
<td>Confidence</td>
<td>BIOGRAPH in Babase::DcauseNatureConfidence in Babase::BIOGRAPH in Babase::DcauseAgentConfidence in Babase::DISPERSEDATES in Babase::</td>
<td>degree of certitude in nature of death, agent of death, disperse date assignment, or maternal group assignment</td>
</tr>
</tbody>
</table>
Table 4: The Warning Sub-System Support Tables

Table

<table>
<thead>
<tr>
<th>Id Column</th>
<th>Related Column(s)</th>
<th>One entry for every possible choice of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQType</td>
<td>INTEGRITY_QUERIES in Babase:</td>
<td>kind of problem with data integrity</td>
</tr>
<tr>
<td>WRID</td>
<td>INTEGRITY_WARNINGS in Babase:</td>
<td>remark which might apply to more than one instance of questionable database integrity</td>
</tr>
</tbody>
</table>

Figure 3

Babase Life Events Entity Relationship Diagram

- **ALTERNATE_SNAAMES**
 - Name
 - Sname_Alternate
 - Name_Alternate
 - Notes

- **RANKS**
 - Rrid
 - Sname
 - Rdate
 - Grp
 - Rank

- **GROUPS**
 - Gid
 - Name
 - From_group
 - Permanent
 - Start
 - Cease_To_Exist
 - Last_Reg_Census
 - Three_letter_code
 - One_letter_code
 - Study_Grp
 - To_group

- **BIOGRAH**
 - Biod
 - Sname
 - Birth
 - Status
 - Sex
 - Matgrp
 - Matgrpconfidenc
 - Pid
 - Name
 - Status
 - Status
 - Dcause
 - Dcause
 - Dcause
 - Dcause
 - EarliestBirth
 - LatestBirth

- **DISPEREDDATES**
 - Sname
 - Dispersed
 - Disconfidenc

- **RANKDATES**
 - Sname
 - Ranked
 - Status

- **CONSORTDATES**
 - Sname
 - Consoried

- **MATUREDATES**
 - Sname
 - Matured
 - Status

- **DAD_DATA**
 - Dadid
 - Dad
 - Mom_sampled
 - Dad_sampled
 - Dad
 - Loco
 - Pads_considered
 - Pads_type
 - Pad_1er
 - Conf_1er
 - Pad_5er
 - Conf_5er
 - Pad_allmals
 - Conf_allmals
 - Dd_consensus
 - Date
 - Software
 - Comments

- The Individual's alternate Snames
- The Individual's maternal group
- The group's ranks
- The groups that fused and made this group
- Immediate ancestor of group
- Immediate groups into which this group split
- Immediate group into which this group fused
- Individuals born into group
- Individuals known by more than one Sname
- All ranks attained
- Individual holding rank
- Group in which rank is held
- Dispersal date
- The ranked individual
- The mature individual
- The individual
- The individual
- The individual
- The ranked individual
- The individual
<table>
<thead>
<tr>
<th>View</th>
<th>One row for each</th>
<th>Purpose</th>
<th>Tables/Views used</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENSUS_DEMOG in Babase:</td>
<td>CENSUS in Babase:</td>
<td>Maintenance of CENSUS in Babase: rows that are extended with DEMOG in Babase: information.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>CENSUS_DEMOG_SORTED in Babase:</td>
<td>CENSUS in Babase:</td>
<td>Maintenance of CENSUS_DEMOG in Babase: rows in a pre-sorted fashion.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>CYCPOINTS_CYCLES in Babase:</td>
<td>CYCPOINTS in Babase:</td>
<td>Maintenance of CYCPOINTS in Babase: rows that are extended with CYCLES in Babase: information.</td>
<td>CYCLES in Babase:, CYCPOINTS in Babase:</td>
</tr>
<tr>
<td>CYCPOINTS_CYCLES_SORTED in Babase:</td>
<td>CYCPOINTS in Babase:</td>
<td>The CYCPOINTS_CYCLES in Babase: view sorted by CYCLES in Babase:.Sname in Babase:, by CYCPOINTS in Babase:.Date in Babase:.</td>
<td>CYCLES in Babase:, CYCPOINTS in Babase:</td>
</tr>
<tr>
<td>DEMOG_CENSUS in Babase:</td>
<td>DEMOG in Babase:</td>
<td>Maintenance of DEMOG in Babase: rows.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>DEMOG_CENSUS_SORTED in Babase:</td>
<td>CENSUS in Babase:</td>
<td>Maintenance of DEMOG_CENSUS in Babase: rows in a pre-sorted fashion.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>GROUPS_HISTORY in Babase:</td>
<td>GROUPS in Babase:</td>
<td>Depiction of GROUPS in Babase: rows in a more human-readable format.</td>
<td>GROUPS in Babase:</td>
</tr>
<tr>
<td>PARENTS in Babase:</td>
<td>BIOGRAPH in Babase:</td>
<td>row for which there is either a row in MATERNITIES in Babase: with a record of the individual’s mother or there is a row in DAD_DATA in Babase: with a record of the individual’s father -- with a non-NULLDad_consensus in Babase:.</td>
<td>BIOGRAPH in Babase:, MATERNITIES in Babase:, DAD_DATA in Babase:, MEMBERS in Babase:</td>
</tr>
<tr>
<td>POTENTIAL_DADS in Babase:</td>
<td></td>
<td>(completed) female reproductive event for every male more than 2192 days old (approximately 6 years) present in the mother’s group during her fertile period</td>
<td>MATERNITIES in Babase:, MEMBERS in Babase: (multiple times), ACTOR_ACTEES in Babase: (multiple times), BIOGRAPH in Babase:, RANK-DATES in Babase:, MATURE-DATES in Babase:</td>
</tr>
<tr>
<td>PROPORTIONAL_RANKS in Babase:</td>
<td>RANKS in Babase:</td>
<td>Automatic calculation of proportional ranks from the ordinal ranks in RANKS in Babase:.</td>
<td>RANKS in Babase:</td>
</tr>
</tbody>
</table>

Physical Traits

<table>
<thead>
<tr>
<th>View</th>
<th>One row for each</th>
<th>Purpose</th>
<th>Tables/Views used</th>
</tr>
</thead>
</table>

Table 6: The table_GRP Views

<table>
<thead>
<tr>
<th>Table</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>BIRTH_GRP in Babase:</td>
</tr>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>ENTRYDATE_GRP in Babase:</td>
</tr>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>STATDATE_GRP in Babase:</td>
</tr>
<tr>
<td>CONSORTDATES in Babase:</td>
<td>CONSORTDATES_GRP in Babase:</td>
</tr>
<tr>
<td>CYCGAPDAYS in Babase:</td>
<td>CYCGAPDAYS_GRP in Babase:</td>
</tr>
<tr>
<td>CYCGAPS in Babase:</td>
<td>CYCGAPS_GRP in Babase:</td>
</tr>
<tr>
<td>CYCSTATS in Babase:</td>
<td>CYCSTATS_GRP in Babase:</td>
</tr>
<tr>
<td>DARTINGS in Babase:</td>
<td>DARTINGS_GRP in Babase:</td>
</tr>
<tr>
<td>DISPERSEDATES in Babase:</td>
<td>DISPERSEDATES_GRP in Babase:</td>
</tr>
<tr>
<td>MATUREDATES in Babase:</td>
<td>MATUREDATES_GRP in Babase:</td>
</tr>
<tr>
<td>MDINTERVALS in Babase:</td>
<td>MDINTERVALS_GRP in Babase:</td>
</tr>
<tr>
<td>MMINTERVALS in Babase:</td>
<td>MMINTERVALS_GRP in Babase:</td>
</tr>
<tr>
<td>PCSKINS in Babase:</td>
<td>PCSKINS_GRP in Babase:</td>
</tr>
<tr>
<td>RANKDATES in Babase:</td>
<td>RANKDATES_GRP in Babase:</td>
</tr>
<tr>
<td>REPSTATS in Babase:</td>
<td>REPSTATS_GRP in Babase:</td>
</tr>
</tbody>
</table>
Figure 4: Babase Sexual Cycle Entity Relationship Diagram
Figure 5: Babase Sexual Cycle Day-To-Day Tables Entity Relationship Diagram
Figure 6: Babase Social Interactions Entity Relationship Diagram
Figure 7: Babase Multiparty Interactions Entity Relationship Diagram
Figure 8: Babase Darting Logistics and Morphology Entity and Relationship Diagram
Figure 9: Babase Darting Physiology Entity and Relationship Diagram
Figure 10: Babase Darting Samples Entity and Relationship Diagram

The Babase Pocket Reference Guide
Figure 11: Babase Darting Teeth and Ticks Entity and Relationship Diagram
Figure 12: Babase Inventory Entity Relationship Diagram
Figure 13: Babase Physical Traits Hormone Data Entity Relationship Diagram
Figure 14: Babase Physical Traits Genetic Hybrid Score Data Entity Relationship Diagram
Figure 15: Babase Physical Traits Wounds and Pathologies Data Entity Relationship Diagram
Figure 16: Babase SWERB Core Tables Entity Relationship Diagram
Figure 17: Babase SWERB Grove/Waterhole Location Tables Entity Relationship Diagram
Figure 18: Babase Manual Weather Data Entity Relationship Diagram
Figure 19: Babase WeatherHawk Data Entity Relationship Diagram
3 The Babase Views

For information on the operations (INSERT, UPDATE, DELETE) allowed by each view and their actions on the underlying tables see The Babase Views in Babase: of The Babase Reference Manual.
3.1 The ACTOR_ACTEES View

```sql
SELECT interact_data.iid AS iid,
       interact_data.sid AS sid,
       interact_data.act AS act,
       interact_data.date AS date,
       interact_data.start AS start,
       interact_data.stop AS stop,
       interact_data.observer AS observer,
       actor.partid AS actorid,
       COALESCE(actor.sname, '998'::CHAR(3)) AS actor,
       (SELECT actorms.grp
            FROM members AS actorms
            WHERE actorms.sname = actor.sname
            AND actorms.date = interact_data.date) AS actor_grp,
       actee.partid AS acteedid,
       COALESCE(actee.sname, '998'::CHAR(3)) AS actee,
       (SELECT acteems.grp
            FROM members AS acteems
            WHERE acteems.sname = actee.sname
            AND acteems.date = interact_data.date) AS actee_grp,
       interact_data.handwritten AS handwritten,
       interact_data.exact_date AS exact_date
FROM interact_data
LEFT OUTER JOIN parts AS actor
  ON (actor.iid = interact_data.iid AND actor.role = 'R')
LEFT OUTER JOIN parts AS actee
  ON (actee.iid = interact_data.iid AND actee.role = 'E');
```

Figure 21: Query Defining the ACTOR_ACTEES View
3.2 The ANESTH_STATS View

```sql
SELECT anesths.dartid AS dartid,
       count(*) AS ansamps,
       avg(anesths.anamount) AS anamount_mean,
       stddev(anesths.anamount) AS anamount_stddev
FROM anesths
GROUP BY anesths.dartid;
```

Figure 23: Query Defining the ANESTH_STATS View
3.3 The BODYTEMP_STATS View

SELECT bodytemps.dartid AS dartid,
 , count(*) AS btsamps
 , avg(bodytemps.btemp) AS btemp_mean
 , stddev(bodytemps.btemp) AS btemp_stddev
FROM bodytemps
GROUP BY bodytemps.dartid;
3.4 The CENSUS_DEMOG and CENSUS_DEMOG_SORTED Views

SELECT census.cenid AS cenid
 , census.sname AS sname
 , census.date AS date
 , census.grp AS grp
 , census.status AS status
 , census.cen AS cen
 , demog.reference AS reference
 , demog.comment AS comment
FROM census LEFT OUTER JOIN demog ON (census.cenid = demog.cenid);

Figure 26: Entity Relationship Diagram of the BODYTEMP_STATS View

Figure 27: Query Defining the CENSUS_DEMOG View

Figure 28: Entity Relationship Diagram of the CENSUS_DEMOG View
3.5 The CHEST_STATS View

SELECT chests.dartid AS dartid,
 count(*) AS chsamps,
 avg(chests.chcircum) AS chcircum_mean,
 stddev(chests.chcircum) AS chcircum_stddev,
 avg(chests.chunadjusted) AS chunadjusted_mean,
 stddev(chests.chunadjusted) AS chunadjusted_stddev
FROM chests
GROUP BY chests.dartid;

Figure 29: Query Defining the CHEST_STATS View

Figure 30: Entity Relationship Diagram of the CHEST_STATS View
3.6 The CROWN RUMP_STATS View

SELECT crownrumps.dartid AS dartid,
 count(*) AS crsamps,
 avg(crownrumps.crlength) AS crlength_mean,
 stddev(crownrumps.crlength) AS crlength_stddev
FROM crownrumps
GROUP BY crownrumps.dartid;

Figure 31: Query Defining the CROWN RUMP_STATS View

3.7 The CYCLES_SEXSKINS and CYCLES_SEXSKINS_SORTED Views

SELECT cycles.cid AS cid,
 cycles.sname AS sname,
 cycles.seq AS seq,
 cycles.series AS series,
 sexskins.sxid AS sxid,
 sexskins.date AS date,
 sexskins.size AS size
FROM cycles LEFT OUTER JOIN sexskins ON (cycles.cid = sexskins.cid);

Figure 33: Query Defining the CYCLES_SEXSKINS View
3.8 The CYCPOINTS_CYCLES and CYCPOINTS_CYCLES_SORTED Views

```sql
SELECT cycles.cid AS cid,
      cycles.sname AS sname,
      cycles.seq AS seq,
      cycles.series AS series,
      cycpoints.cpid AS cpid,
      cycpoints.date AS date,
      cycpoints.edate AS edate,
      cycpoints.ldate AS ldate,
      cycpoints.code AS code,
      cycpoints.source AS source
FROM cycles, cycpoints
WHERE cycles.cid = cycpoints.cid;
```

Figure 34: Entity Relationship Diagram of the CYCLES_SEXSkins View

Figure 35: Query Defining the CYCPOINTS_CYCLES View

Figure 36: Entity Relationship Diagram of the CYCPOINTS_CYCLES View
3.9 The DSAMPLES View

```sql
SELECT dartings.dartid,
dartings.sname,
dartings.date,
members.grp,
blood_unspecs.num AS bloodunspec,
blood_paxgenes.num AS bloodpaxgene,
blood_purpletops.num AS bloodpurpletops,
blood_separators.num AS bloodseptube,
blood_cpts.num AS bloodcpt,
blood_trucultures.num AS bloodtruculture,
blood_smears.num AS bloodsmear,
tc_bloods.num AS tcblood,
hair_unspecs.num AS hairunspec,
hair_lengths.num AS hairlength,
hair_cu_zns.num AS haircu_zn,
teeth_3mouths.num AS mouthphotos3,
teeth_lmandmolds.num AS lmandmold,
teeth_lmaxmolds.num AS lmaxillamold,
teeth_lmol1mol2s.num AS lm1m2siliconemold,
skin_punchs.num AS skinpunch,
tc_skins.num AS tcskin,
vag_swabs.num AS vaginalsSwab,
cerv_swabs.num AS cervicalSwab,
fecal_formalin.num AS fecal_formalin,
vaginal_ph.num AS vaginal_ph,
palm_swab.num AS palm_swab,
tongue_swab.num AS tongue_swab,
tooth_plaque_swab.num AS tooth_plaque_swab,
vagswab_microbiome.num AS vagswab_microbiome,
glans_penis_swab.num AS glans_penis_swab,
fecal_microbiome.num AS fecal_microbiome,
nostrils_swab.num AS nostrils_swab,
skin_behind_ear_swab.num AS skin_behind_ear_swab,
skin_inside_elbow_swab.num AS skin_inside_elbow_swab
FROM dartings
JOIN members
ON dartings.sname = members.sname
AND dartings.date = members.date
LEFT JOIN dart_samples blood_unspecs
ON dartings.dartid = blood_unspecs.dartid
AND blood_unspecs.ds_type = 1
LEFT JOIN dart_samples blood_paxgenes
ON dartings.dartid = blood_paxgenes.dartid
AND blood_paxgenes.ds_type = 2
LEFT JOIN dart_samples blood_purpletops
ON dartings.dartid = blood_purpletops.dartid
AND blood_purpletops.ds_type = 3
LEFT JOIN dart_samples blood_separators
ON dartings.dartid = blood_separators.dartid
AND blood_separators.ds_type = 4
LEFT JOIN dart_samples blood_cpts
ON dartings.dartid = blood_cpts.dartid
AND blood_cpts.ds_type = 5
LEFT JOIN dart_samples blood_trucultures
ON dartings.dartid = blood_trucultures.dartid
AND blood_trucultures.ds_type = 6
LEFT JOIN dart_samples blood_smears
ON dartings.dartid = blood_smears.dartid
AND blood_smears.ds_type = 7
LEFT JOIN dart_samples hair_unspecs
ON dartings.dartid = hair_unspecs.dartid
AND hair_unspecs.ds_type = 8
LEFT JOIN dart_samples hair_lengths
ON dartings.dartid = hair_lengths.dartid
AND hair_lengths.ds_type = 9
LEFT JOIN dart_samples hair_cu_zns
ON dartings.dartid = hair_cu_zns.dartid
AND hair_cu_zns.ds_type = 10
LEFT JOIN dart_samples teeth_3mouths
ON dartings.dartid = teeth_3mouths.dartid
AND teeth_3mouths.ds_type = 11
LEFT JOIN dart_samples teeth_lmandmolds
ON dartings.dartid = teeth_lmandmolds.dartid
AND teeth_lmandmolds.ds_type = 12
LEFT JOIN dart_samples teeth_lmaxmolds
ON dartings.dartid = teeth_lmaxmolds.dartid
AND teeth_lmaxmolds.ds_type = 13
LEFT JOIN dart_samples teeth_lmol1mol2s
ON dartings.dartid = teeth_lmol1mol2s.dartid
AND teeth_lmol1mol2s.ds_type = 14
LEFT JOIN dart_samples skin_punchs
ON dartings.dartid = skin_punchs.dartid
AND skin_punchs.ds_type = 15
LEFT JOIN dart_samples vag_swabs
ON dartings.dartid = vag_swabs.dartid
AND vag_swabs.ds_type = 16
LEFT JOIN dart_samples cerv_swabs
ON dartings.dartid = cerv_swabs.dartid
AND cerv_swabs.ds_type = 17
LEFT JOIN dart_samples tc_bloods
ON dartings.dartid = tc_bloods.dartid
AND tc_bloods.ds_type = 18
LEFT JOIN dart_samples tc_skins
ON dartings.dartid = tc_skins.dartid
AND tc_skins.ds_type = 19
LEFT JOIN dart_samples fecal_formalin
ON dartings.dartid = fecal_formalin.dartid
AND fecal_formalin.ds_type = 20
LEFT JOIN dart_samples vaginal_ph
ON dartings.dartid = vaginal_ph.dartid
AND vaginal_ph.ds_type = 21
LEFT JOIN dart_samples palm_swab
ON dartings.dartid = palm_swab.dartid
AND palm_swab.ds_type = 22
LEFT JOIN dart_samples tongue_swab
ON dartings.dartid = tongue_swab.dartid
AND tongue_swab.ds_type = 23
LEFT JOIN dart_samples tooth_plaque_swab
ON dartings.dartid = tooth_plaque_swab.dartid
AND tooth_plaque_swab.ds_type = 24
LEFT JOIN dart_samples vagswab_microbiome
ON dartings.dartid = vagswab_microbiome.dartid
AND vagswab_microbiome.ds_type = 25
LEFT JOIN dart_samples glans_penis_swab
ON dartings.dartid = glans_penis_swab.dartid
AND glans_penis_swab.ds_type = 26
LEFT JOIN dart_samples fecal_microbiome
ON dartings.dartid = fecal_microbiome.dartid
AND fecal_microbiome.ds_type = 27
LEFT JOIN dart_samples nostrils_swab
ON dartings.dartid = nostrils_swab.dartid
AND nostrils_swab.ds_type = 28
LEFT JOIN dart_samples skin_behind_ear_swab
ON dartings.dartid = skin_behind_ear_swab.dartid
AND skin_behind_ear_swab.ds_type = 29
LEFT JOIN dart_samples skin_inside_elbow_swab
ON dartings.dartid = skin_inside_elbow_swab.dartid
AND skin_inside_elbow_swab.ds_type = 30;
```

Figure 37: Query Defining the DSAMPLES View
3.10 The DEMOG_CENSUS and DEMOG_CENSUS_SORTED Views

```sql
SELECT census.cenid AS cenid,
       census.sname AS sname,
       census.date AS date,
       census.grp AS grp,
       census.status AS status,
       census.cen AS cen,
       demog.reference AS reference,
       demog.comment AS comment
FROM census, demog
WHERE census.cenid = demog.cenid;
```

![Figure 38: Query Defining the DEMOG_CENSUS View](image)

![Figure 39: Entity Relationship Diagram of the DEMOG_CENSUS View](image)
3.11 The DENT_CODES View

```sql
SELECT teethdartids.dartid AS dartid,
    rum3.rum3tstate AS rum3tstate,
    rum3.rum3tcondition AS rum3tcondition,
    rum2.rum2tstate AS rum2tstate,
    rum2.rum2tcondition AS rum2tcondition,
    rum1.rum1tstate AS rum1tstate,
    rum1.rum1tcondition AS rum1tcondition,
    rup2.rup2tstate AS rup2tstate,
    rup2.rup2tcondition AS rup2tcondition,
    rup1.rup1tstate AS rup1tstate,
    rup1.rup1tcondition AS rup1tcondition,
    ruc.ructstate AS ructstate,
    ruc.ructcondition AS ructcondition,
    rui2.rui2tstate AS rui2tstate,
    rui2.rui2tcondition AS rui2tcondition,
    rui1.ruilttstate AS rui1tstate,
    rui1.rui1ttcondition AS rui1tcondition,
    lrm1.lrm1tstate AS lrm1tstate,
    lrm1.lrm1tcondition AS lrm1tcondition,
    lrp2.rlp2tstate AS rlp2tstate,
    lrp2.rlp2tcondition AS rlp2tcondition,
    lrp1.rlp1tstate AS rlp1tstate,
    lrp1.rlp1tcondition AS rlp1tcondition,
    lrc.rlcstate AS rlcstate,
    lrc.rlctstate AS rlctstate,
    lui2.lui2tstate AS lui2tstate,
    lui2.lui2tcondition AS lui2tcondition,
    llm1.llm1tstate AS llm1tstate,
    llm1.llm1tcondition AS llm1tcondition,
    llm2.llm2tstate AS llm2tstate,
    llm2.llm2tcondition AS llm2tcondition,
    llm3.llm3tstate AS llm3tstate,
    llm3.llm3tcondition AS llm3tcondition,
    llp1.llp1tstate AS llp1tstate,
    llp1.llp1tcondition AS llp1tcondition,
    llc.llcstate AS llcstate,
    llc.llctstate AS llctstate,
    llc.llctcondition AS llctcondition,
    lup2.lup2tstate AS lup2tstate,
    lup2.lup2tcondition AS lup2tcondition,
    lup1.lup1tstate AS lup1tstate,
    lup1.lup1tcondition AS lup1tcondition,
    rup2.rup2tstate AS rup2tstate,
    rup2.rup2tcondition AS rup2tcondition,
    rup1.rup1tstate AS rup1tstate,
    rup1.rup1tcondition AS rup1tcondition,
    ruc.ructstate AS ructstate,
    ruc.ructcondition AS ructcondition,
    rui2.rui2tstate AS rui2tstate,
    rui2.rui2tcondition AS rui2tcondition,
    rui1.ruilttstate AS rui1tstate,
    rui1.rui1ttcondition AS rui1tcondition,
    lrm1.lrm1tstate AS lrm1tstate,
    lrm1.lrm1tcondition AS lrm1tcondition,
    lrm2.lrm2tstate AS lrm2tstate,
    lrm2.lrm2tcondition AS lrm2tcondition,
    lrm3.lrm3tstate AS lrm3tstate,
    lrm3.lrm3tcondition AS lrm3tcondition,
    llm1.llm1tstate AS llm1tstate,
    llm1.llm1tcondition AS llm1tcondition,
    llm2.llm2tstate AS llm2tstate,
    llm2.llm2tcondition AS llm2tcondition,
    llm3.llm3tstate AS llm3tstate,
    llm3.llm3tcondition AS llm3tcondition,
    llp1.llp1tstate AS llp1tstate,
    llp1.llp1tcondition AS llp1tcondition,
    llc.llcstate AS llcstate,
    llc.llctstate AS llctstate,
    llc.llctcondition AS llctcondition,
    lup2.lup2tstate AS lup2tstate,
    lup2.lup2tcondition AS lup2tcondition,
    lup1.lup1tstate AS lup1tstate,
    lup1.lup1tcondition AS lup1tcondition,
    lui2.lui2tstate AS lui2tstate,
    lui2.lui2tcondition AS lui2tcondition,
    llm1.llm1tstate AS llm1tstate,
    llm1.llm1tcondition AS llm1tcondition,
    llm2.llm2tstate AS llm2tstate,
    llm2.llm2tcondition AS llm2tcondition,
    llm3.llm3tstate AS llm3tstate,
    llm3.llm3tcondition AS llm3tcondition,
    llp1.llp1tstate AS llp1tstate,
    llp1.llp1tcondition AS llp1tcondition,
    llc.llcstate AS llcstate,
    llc.llctstate AS llctstate,
    llc.llctcondition AS llctcondition,
    rup2.rup2tstate AS rup2tstate,
    rup2.rup2tcondition AS rup2tcondition,
    rup1.rup1tstate AS rup1tstate,
    rup1.rup1tcondition AS rup1tcondition,
    ruc.ructstate AS ructstate,
    ruc.ructcondition AS ructcondition,
    rui2.rui2tstate AS rui2tstate,
    rui2.rui2tcondition AS rui2tcondition,
    rui1.ruilttstate AS rui1tstate,
    rui1.rui1ttcondition AS rui1tcondition,
    lrm1.lrm1tstate AS lrm1tstate,
Figure 41: Entity Relationship Diagram of the DENT_CODES View
3.12 The DENT_SITES View

SELECT teethdartids.dartid AS dartid,
  s1.sl1tstate AS sl1tstate,
  s1.sl1tcondition AS sl1tcondition,
  s1.sl1deciduous AS sl1deciduous,
  s2.sl2tstate AS sl2tstate,
  s2.sl2tcondition AS sl2tcondition,
  s2.sl2deciduous AS sl2deciduous,
  s3.sl3tstate AS sl3tstate,
  s3.sl3tcondition AS sl3tcondition,
  s3.sl3deciduous AS sl3deciduous,
  s4.sl4tstate AS sl4tstate,
  s4.sl4tcondition AS sl4tcondition,
  s4.sl4deciduous AS sl4deciduous,
  s5.sl5tstate AS sl5tstate,
  s5.sl5tcondition AS sl5tcondition,
  s5.sl5deciduous AS sl5deciduous,
  s6.sl6tstate AS sl6tstate,
  s6.sl6tcondition AS sl6tcondition,
  s6.sl6deciduous AS sl6deciduous,
  s7.sl7tstate AS sl7tstate,
  s7.sl7tcondition AS sl7tcondition,
  s7.sl7deciduous AS sl7deciduous,
  s8.sl8tstate AS sl8tstate,
  s8.sl8tcondition AS sl8tcondition,
  s8.sl8deciduous AS sl8deciduous,
  s9.sl9tstate AS sl9tstate,
  s9.sl9tcondition AS sl9tcondition,
  s9.sl9deciduous AS sl9deciduous,
  s10.sl10tstate AS sl10tstate,
  s10.sl10tcondition AS sl10tcondition,
  s10.sl10deciduous AS sl10deciduous,
  s11.sl11tstate AS sl11tstate,
  s11.sl11tcondition AS sl11tcondition,
  s11.sl11deciduous AS sl11deciduous,
  s12.sl12tstate AS sl12tstate,
  s12.sl12tcondition AS sl12tcondition,
  s12.sl12deciduous AS sl12deciduous,
  s13.sl13tstate AS sl13tstate,
  s13.sl13tcondition AS sl13tcondition,
  s13.sl13deciduous AS sl13deciduous,
  s14.sl14tstate AS sl14tstate,
  s14.sl14tcondition AS sl14tcondition,
  s14.sl14deciduous AS sl14deciduous,
  s15.sl15tstate AS sl15tstate,
  s15.sl15tcondition AS sl15tcondition,
  s15.sl15deciduous AS sl15deciduous,
  s16.sl16tstate AS sl16tstate,
  s16.sl16tcondition AS sl16tcondition,
  s16.sl16deciduous AS sl16deciduous,
  s17.sl17tstate AS sl17tstate,
  s17.sl17tcondition AS sl17tcondition,
  s17.sl17deciduous AS sl17deciduous,
  s18.sl18tstate AS sl18tstate,
  s18.sl18tcondition AS sl18tcondition,
  s18.sl18deciduous AS sl18deciduous,
  s19.sl19tstate AS sl19tstate,
  s19.sl19tcondition AS sl19tcondition,
  s19.sl19deciduous AS sl19deciduous,
  s20.sl20tstate AS sl20tstate,
  s20.sl20tcondition AS sl20tcondition,
  s20.sl20deciduous AS sl20deciduous,
  s21.sl21tstate AS sl21tstate,
  s21.sl21tcondition AS sl21tcondition,
  s21.sl21deciduous AS sl21deciduous,
  s22.sl22tstate AS sl22tstate,
  s22.sl22tcondition AS sl22tcondition,
  s22.sl22deciduous AS sl22deciduous,
  s23.sl23tstate AS sl23tstate,
  s23.sl23tcondition AS sl23tcondition,
  s23.sl23deciduous AS sl23deciduous,
  s24.sl24tstate AS sl24tstate,
  s24.sl24tcondition AS sl24tcondition,
  s24.sl24deciduous AS sl24deciduous,
  s25.sl25tstate AS sl25tstate,
  s25.sl25tcondition AS sl25tcondition,
  s25.sl25deciduous AS sl25deciduous,
  s26.sl26tstate AS sl26tstate,
  s26.sl26tcondition AS sl26tcondition,
Figure 43: Entity Relationship Diagram of the DENT_SITES View

The unique Daltid values occurring in TEETH.

The Tstate value of the TEETH row having the correct Daltid and a related Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

The Tcondition value of the TEETH row having the correct Daltid and a related Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

The Deciduous value of the TOOTHCODES row related to the TEETH row having the correct Daltid and a Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

+ These columns repeat, there is a set of these columns for every distinct TOOTHCODES Toothsite value. The “TS” shown here in each column name is replaced in the actual column name with the letter “s” followed by a TOOTHCODE Toothsite value.
3.13 The INTERACT and INTERACT_SORTED Views

SELECT iid AS iid
    , interact_data.sid AS sid
    , interact_data.act AS act
    , acts.class AS class
    , interact_data.date AS date
    , julian(interact_data.date) AS jdate
    , interact_data.start AS start
    , spm(interact_data.start) AS startspm
    , stop AS stop
    , spm(interact_data.stop) AS stopspm
    , interact_data.observer AS observer
    , interact_data.handwritten AS handwritten
    , interact_data.exact_date AS exact_date
FROM interact_data
    JOIN acts
    ON (acts.act = interact_data.act);

Figure 44: Query Defining the INTERACT View

<table>
<thead>
<tr>
<th>INTERACT_DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id (iid)</td>
</tr>
<tr>
<td>Sid (Sid)</td>
</tr>
<tr>
<td>Act (Act)</td>
</tr>
<tr>
<td>Date (Date)</td>
</tr>
<tr>
<td>(Jdate)</td>
</tr>
<tr>
<td>Start (Start)</td>
</tr>
<tr>
<td>(Startspm)</td>
</tr>
<tr>
<td>Stop (Stop)</td>
</tr>
<tr>
<td>(Stopspm)</td>
</tr>
<tr>
<td>Observer * (Observer)</td>
</tr>
<tr>
<td>Handwritten (Handwritten)</td>
</tr>
<tr>
<td>Exact_Date (Exact_Date)</td>
</tr>
</tbody>
</table>
3.14 The LOCATIONS_FREE View

SELECT locations.locid AS locid,
       locations.institution AS institution,
       locations.location AS location,
       locations.is_unique AS is_unique
FROM locations
WHERE NOT EXISTS (SELECT 1
                  FROM tissue_data
                  WHERE tissue_data.locid = locations.locid)
AND NOT EXISTS (SELECT 1
                FROM nucacid_data
                WHERE nucacid_data.locid = locations.locid);

Figure 46: Query Defining the LOCATIONS_FREE View

Figure 47: Entity Relationship Diagram of the LOCATIONS_FREE View
3.15 The MATERNITIES View

```sql
SELECT cycles.sname AS mom,
 cycles.cid AS cid,
 cycles.seq AS seq,
 cycles.series AS series,
 cycpoints.cpid AS conceive,
 cycpoints.date AS zdate,
 members.grp AS zdate_grp,
 cycpoints.edate AS edate,
 cycpoints.1date AS ldate,
 cycpoints.source AS source,
 pregs.pid AS pid,
 pregs.parity AS parity,
 biograph.bioid AS child_bioid,
 biograph.sname AS child,
 biograph.birth AS birth
FROM cycles
JOIN cycpoints ON (cycpoints.cid = cycles.cid)
JOIN members ON (members.date = cycpoints.date
 AND members.sname = cycles.sname)
JOIN pregs ON (pregs.conceive = cycpoints.cpid)
JOIN biograph ON (pregs.pid = biograph.pid);
```

Figure 48: Query Defining the MATERNITIES View
Figure 49: Entity Relationship Diagram of the MATERNITIES View

+ Although a join on this column alone returns multiple rows, because there is another join on a different column only 1 row matches all the criteria. (The combination of Sname and Date is unique.)
3.16 The MIN_MAXS View

SELECT wreadings.wrid AS wrid,
      wreadings.wstation AS wstation,
      wreadings.wrdaytime AS wrdaytime,
      wreadings.estdaytime AS estdaytime,
      wreadings.wrperson AS wrperson,
      wreadings.wrnotes AS wrnotes,
      tempmins.tempmin AS tempmin,
      tempmaxs.tempmax AS tempmax,
      raingauges.rgspan AS rgspan,
      raingauges.estrgspan AS estrgspan,
      raingauges.rain AS rain
FROM wreadings
  LEFT OUTER JOIN tempmins
    ON wreadings.wrid = tempmins.wrid
  LEFT OUTER JOIN tempmaxs
    ON wreadings.wrid = tempmaxs.wrid
  LEFT OUTER JOIN raingauges
    ON wreadings.wrid = raingauges.wrid;

Figure 50: Query Defining the MIN_MAXS View
Figure 51: Entity Relationship Diagram of the MIN_MAXS View
### 3.17 The MIN_MAXS_SORTED View

```sql
SELECT wreadings.wrid AS wrid,
 wreadings.wstation AS wstation,
 wreadings.wrdaytime AS wrdaytime,
 wreadings.estdaytime AS estdaytime,
 wreadings.wrperson AS wrperson,
 wreadings.wrnotes AS wrnotes,
 tempmins.tempmin AS tempmin,
 tempmaxs.tempmax AS tempmax,
 raingauges.rgspan AS rgspan,
 raingauges.estrgspan AS estrgspan,
 raingauges.rain AS rain
FROM wreadings
 LEFT OUTER JOIN tempmins
 ON wreadings.wrid = tempmins.wrid
 LEFT OUTER JOIN tempmaxs
 ON wreadings.wrid = tempmaxs.wrid
 LEFT OUTER JOIN raingauges
 ON wreadings.wrid = raingauges.wrid
ORDER BY wreadings.wrdaytime, wreadings.wstation;
```

Figure 52: Query Defining the MIN_MAXS_SORTED View
Figure 53: Entity Relationship Diagram of the MIN_MAXS_SORTED View
### 3.18 The MPI_EVENTS View

```sql
SELECT mpis.mpiid AS mpiid,
 mpis.date AS date,
 mpis.context_type AS context_type,
 mpis.context AS context,
 mpi_data.mpidid AS mpidid,
 mpi_data.seq AS seq,
 mpi_data.mpiact AS mpiact,
 actor.mpipid AS actorid,
 actor.sname AS actor,
 actor.unksname AS unkactor,
 actee.mpipid AS acteeid,
 actee.sname AS actee,
 actee.unksname AS unkactee,
 CASE WHEN EXISTS(SELECT 1
 FROM mpiacts
 WHERE mpiacts.mpiact = mpi_data.mpiact
 AND mpiacts.kind = 'H')
 THEN
 EXISTS(SELECT 1
 FROM mpi_data AS request,
 mpiacts,
 mpi_parts AS requestor,
 mpi_parts AS requestee
 WHERE request.mpiid = mpi_data.mpiid
 AND request.seq < mpi_data.seq
 AND mpiacts.mpiact = request.mpiact
 AND mpiacts.kind = 'R'
 AND requestor.mpidid = request.mpiidid
 AND requestor.role = 'R'
 AND requestor.sname = actee.sname
 AND requestee.mpidid = request.mpiid
 AND requestee.role = 'E'
 AND requestee.sname = actor.sname)
 ELSE
 NULL
 END AS solicited,
 EXISTS(SELECT 1
 FROM mpi_data AS initial,
 mpiacts
 WHERE initial.mpiid = mpi_data.mpiid
 AND initial.seq = 1
 AND mpiacts.mpiact = initial.mpiact
 AND mpiacts.decided)
 AS decided,
 mpi_data.helped AS helped,
 mpi_data.active AS active
FROM mpis
LEFT OUTER JOIN mpi_data ON (mpis.mpiid = mpi_data.mpiid)
LEFT OUTER JOIN mpi_parts AS actor
 ON (actor.mpipid = mpi_data.mpipid AND actor.role = 'R')
LEFT OUTER JOIN mpi_parts AS actee
 ON (actee.mpipid = mpi_data.mpipid AND actee.role = 'E');
```

Figure 54: Query Defining the MPI_EVENTS View
Figure 55: Entity Relationship Diagram of the MPI_EVENTS View
3.19 The MTD_CYCLES View

```
SELECT cycles.cid AS cid,
 cycles.sname AS sname,
 cycles.seq AS seq,
 cycles.series AS series,
 mcp.cpid AS mcpid,
 mcp.date AS mdate,
 mcp.edate AS emdate,
 mcp.ldate AS lmdate,
 mcp.source AS msource,
 tcp.cpid AS tcpid,
 tcp.date AS tdate,
 tcp.edate AS etdate,
 tcp.ldate AS ltdate,
 tcp.source AS tsource,
 dcp.cpid AS dcpid,
 dcp.date AS ddate,
 dcp.edate AS eddate,
 dcp.ldate AS lddate,
 dcp.source AS dsource
FROM cycles
LEFT OUTER JOIN cycpoints AS mcp ON (mcp.cid = cycles.cid
 AND mcp.code = 'M')
LEFT OUTER JOIN cycpoints AS tcp ON (tcp.cid = cycles.cid
 AND tcp.code = 'T')
LEFT OUTER JOIN cycpoints AS dcp ON (dcp.cid = cycles.cid
 AND dcp.code = 'D')
ORDER BY cycles.sname, cycles.seq;
```

Figure 56: Query Defining the MTD_CYCLES View
Figure 57: Entity Relationship Diagram of the MTD_CYCLES View
3.20 The NUCACID_CONCS View

```
SELECT nucacid_conc_data.nacid AS nacid,
 nucacid_conc_data.naid AS naid,
 local_1.localid AS localid_1,
 local_2.localid AS localid_2,
 nucacid_conc_data.conc_method AS conc_method,
 nucacid_conc_methods.descr AS method_descr,
 nucacid_conc_data.conc_date AS conc_date,
 nucacid_conc_data.pg_ul AS pg_ul,
 (nucacid_conc_data.pg_ul / 1000)::numeric(10,4) AS ng_ul
FROM nucacid_conc_data
JOIN nucacid_conc_methods
 ON nucacid_conc_methods.conc_method = nucacid_conc_data.conc_method
LEFT JOIN nucacid_local_ids AS local_1
 ON local_1.naid = nucacid_conc_data.naid
 AND local_1.institution = 1
LEFT JOIN nucacid_local_ids AS local_2
 ON local_2.naid = nucacid_conc_data.naid
 AND local_2.institution = 2;
```

Figure 58: Query Defining the NUCACID_CONCS View

Figure 59: Entity Relationship Diagram of the NUCACID_CONCS View
3.21 The NUCACIDS View

WITH concat_creators AS (SELECT naid,
, string_agg(creator, '/') ORDER BY naid, nacrid) AS created_by
FROM nucacidCreators
GROUP BY naid)

SELECT nucacid_data.naid AS naid,
, nucacid_data.tid AS tid
, nucacid_data.locid AS locid
, locations.institution AS institution
, locations.location AS location
, local_1.localid AS localid_1
, local_2.localid AS localid_2
, tissue_data.uid AS uid
, unique_indivs.popid AS popid
, unique_indivs.individ AS individ
, biograph.sname AS sname
, nucacid_data.name_on_tube AS name_on_tube
, nucacid_data.nucacid_type AS nucacid_type
, tissue_data.tissue_type AS tissue_type
, nucacid_data.creation_date AS creation_date
, concat_creators.created_by AS created_by
, nucacid_data.creation_method AS creation_method
, nucacid_sources.source_naid AS source_na
, nucacid_sources.relationship AS source_na_relationship
, nucacid_data.initial_vol_ul AS initial_vol_ul
, nucacid_data.actual_vol_ul AS actual_vol_ul
, nucacid_data.actual_vol_date AS actual_vol_date
, nucacid_data.notes AS notes
FROM nucacid_data
JOIN locations
ON locations.locid = nucacid_data.locid
JOIN tissue_data
ON tissue_data.tid = nucacid_data.tid
JOIN unique_indivs
ON unique_indivs.uiid = tissue_data.uid
LEFT JOIN biograph
ON biograph.bioid::text = unique_indivs.individ
AND unique_indivs.popid = 1
LEFT JOIN nucacid_local_ids AS local_1
ON local_1.naid = nucacid_data.naid
AND local_1.institution = 1
LEFT JOIN nucacid_local_ids AS local_2
ON local_2.naid = nucacid_data.naid
AND local_2.institution = 2
LEFT JOIN nucacid_sources
ON nucacid_sources.naid = nucacid_data.naid
LEFT JOIN concat_creators
ON concat_creators.naid = nucacid_data.naid;

Figure 60: Query Defining the NUCACIDS View
Figure 61: Entity Relationship Diagram of the NUCACIDS View

* CONCAT_CREATORS is a subquery from NUCACID_CREATORS, in which all Creator rows for an NAId are concatenated (but separated by a "/") into a single string. It does not appear anywhere as an independent entity.
3.22 The NUCACIDS_W_CONC View

WITH last_quants AS (SELECT DISTINCT
    naid,
    conc_method,
    last_value(pg_ul) OVER w AS last_pg_ul,
    last_value(conc_date) OVER w AS lastdate
FROM nucacid_conc_data
WHERE conc_date IS NOT NULL
WINDOW w AS (PARTITION BY naid, conc_method
ORDER BY conc_date
    RANGE BETWEEN UNBOUNDED PRECEDING
    AND UNBOUNDED FOLLOWING))

, concat_creators AS (SELECT naid,
    string_agg(creator, '/' ORDER BY naid, nacrid) AS created_by
FROM nucacid_creators
GROUP BY naid)

SELECT nucacid_data.naid AS naid,
    nucacid_data.tid AS tid,
    nucacid_data.locid AS locid,
    locations.institution AS institution,
    locations.location AS location,
    local_1.localid AS localid_1,
    local_2.localid AS localid_2,
    tissue_data.uid AS uid,
    unique_indivs.popid AS popid,
    unique_indivs.individ AS individ,
    biograph.sname AS sname,
    nucacid_data.name_on_tube AS name_on_tube,
    nucacid_data.nucacid_type AS nucacid_type,
    tissue_data.tissue_type AS tissue_type,
    nucacid_data.creation_date AS creation_date,
    concat_creators.created_by AS created_by,
    nucacid_data.creation_method AS creation_method,
    nucacid_sources.source_naid AS source_na,
    nucacid_sources.relationship AS source_na_relationship,
    nucacid_data.initial_vol_ul AS initial_vol_ul,
    nucacid_data.actual_vol_ul AS actual_vol_ul,
    nucacid_data.actual_vol_date AS actual_vol_date,
    nucacid_data.notes AS notes,
    qpcr.last_pg_ul AS qpcr_pg_ul,
    qpcr.lastdate AS qpcr_lastdate,
    (nanodrop.last_pg_ul / 1000)::numeric(10,4) AS nanodrop_ng_ul,
    nanodrop.lastdate AS nanodrop_lastdate,
    (qubit.last_pg_ul / 1000)::numeric(10,4) AS qubit_ng_ul,
    qubit.lastdate AS qubit_lastdate,
    (bioanalyzer.last_pg_ul / 1000)::numeric(10,4) AS bioanalyzer_ng_ul,
    bioanalyzer.lastdate AS bioanalyzer_lastdate,
    (quantit.last_pg_ul / 1000)::numeric(10,4) AS quantit_ng_ul,
    quantit.lastdate AS quantit_lastdate
FROM nucacid_data
JOIN locations
    ON locations.locid = nucacid_data.locid
JOIN tissue_data
    ON tissue_data.tid = nucacid_data.tid
JOIN unique_indivs
    ON unique_indivs.uiid = tissue_data.uiid
LEFT JOIN biograph
    ON biograph.bioid::text = unique_indivs.individ
    AND unique_indivs.popid = 1
LEFT JOIN nucacid_local_ids AS local_1
    ON local_1.naid = nucacid_data.naid
    AND local_1.institution = 1
LEFT JOIN nucacid_local_ids AS local_2
    ON local_2.naid = nucacid_data.naid
    AND local_2.institution = 2
LEFT JOIN nucacid_sources
    ON nucacid_sources.naid = nucacid_data.naid
LEFT JOIN concat_creators
    ON concat_creators.naid = nucacid_data.naid
LEFT JOIN last_quants AS qpcr
    ON qpcr.conc_method = 1
    AND qpcr.naid = nucacid_data.naid
LEFT JOIN last_quants AS nanodrop
    ON nanodrop.conc_method = 2
    AND nanodrop.naid = nucacid_data.naid
LEFT JOIN last_quants AS qubit
    ON qubit.conc_method = 3
    AND qubit.naid = nucacid_data.naid
LEFT JOIN last_quants AS bioanalyzer
    ON bioanalyzer.conc_method = 4
    AND bioanalyzer.naid = nucacid_data.naid
LEFT JOIN last_quants AS quantit
    ON quantit.conc_method = 5
    AND quantit.naid = nucacid_data.naid;
Figure 63: Entity Relationship Diagram of the NUCACIDS_W_CONC View
3.23 The PARENTS View

SELECT biograph.sname AS kid
    , maternities.mom AS mom
    , dad_data.dad_consensus AS dad
    , maternities.zdate AS zdate
    , dad_data.dadid AS dadid
    , maternities.zdate_grp AS momgrp
    , members.grp AS dadgrp
FROM biograph
    LEFT OUTER JOIN maternities
        ON (maternities.child = biograph.sname)
    LEFT OUTER JOIN dad_data
        ON (dad_data.kid = biograph.sname)
    LEFT OUTER JOIN members
        ON (members.sname = dad_data.dad_consensus
            AND members.date = maternities.zdate)
WHERE maternities.mom IS NOT NULL
    OR dad_data.dad_consensus IS NOT NULL;

Figure 64: Query Defining the PARENTS View
### The PCSKINS_SORTED View

```sql
SELECT pcskins.pcsid AS pcsid,
 pcskins.sname AS sname,
 pcskins.date AS date,
 pcskins.color AS color
FROM pcskins
ORDER BY sname, date;
```

Figure 66: Query Defining the PCSKINS_SORTED View

---

A BIOGRAPH row does not appear in this view unless there is either a related DAD_DATA row or a related MATERNITIES row.

A MEMBERS row appears in this view only when related to both a DAD_DATA and a MATERNITIES row.

---

Figure 65: Entity Relationship Diagram of the PARENTS View

#### 3.24 The PCSKINS_SORTED View
3.25 The PCV_STATS View

```sql
SELECT pcvs.dartid AS dartid,
 count(*) AS pcvsamps,
 avg(pcvs.pcv) AS pcv_mean,
 stddev(pcvs.pcv) AS pcv_stddev
FROM pcvs
GROUP BY pcvs.dartid;
```

Figure 68: Query Defining the PCV_STATS View

Figure 69: Entity Relationship Diagram of the PCV_STATS View
### 3.26 The POINTS and POINTS_SORTED Views

```sql
SELECT pntid AS pntid,
 sid AS sid,
 activity AS activity,
 posture AS posture,
 foodcode AS foodcode,
 ptime AS ptime,
 spm(ptime) AS ptimespm
FROM point_data;
```

Figure 70: Query Defining the POINTS View

<table>
<thead>
<tr>
<th>POINT_DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pntid (Pntid)</td>
</tr>
<tr>
<td>Sid (Sid)</td>
</tr>
<tr>
<td>Activity * (Activity)</td>
</tr>
<tr>
<td>Posture * (Posture)</td>
</tr>
<tr>
<td>Foodcode * (Foodcode)</td>
</tr>
<tr>
<td>Ptime (Ptime)</td>
</tr>
<tr>
<td>(Ptimestpm)</td>
</tr>
</tbody>
</table>

Figure 71: Entity Relationship Diagram of the POINTS View
3.27 The POTENTIAL_DADS View

SELECT maternities.child_bioid AS bioid
    , maternities.child AS kid
    , maternities.mom AS mom
    , maternities.zdate AS zdate
    , maternities.zdate_grp AS grp
    , pdads.sname AS pdad
    , CASE
        WHEN rankdates.ranked <= maternities.zdate
            THEN 'A'
        WHEN maturedates.matured <= maternities.zdate
            THEN 'S'
        ELSE 'O'
    END AS status
    , maternities.zdate - pdads.birth AS pdad_age_days
    , trunc((maternities.zdate - pdads.birth) / 365.25, 1)
    AS pdad_age_years
    , (SELECT count(*)
        FROM members AS dadmembers
        JOIN members AS mommembers
        ON (mommembers.date = dadmembers.date
            AND mommembers.supergroup = dadmembers.supergroup)
        WHERE dadmembers.sname = pdads.sname
            AND dadmembers.date < maternities.zdate
            AND dadmembers.date >= maternities.zdate - 5
            AND mommembers.sname = maternities.mom
            AND mommembers.date < maternities.zdate
            AND mommembers.date >= maternities.zdate - 5)
    AS estrous_presence
    , (SELECT count(*)
        FROM actor_actees
        WHERE actor_actees.date < maternities.zdate
            AND actor_actees.date >= maternities.zdate - 5
            AND (actor_actees.act = 'M'
                OR actor_actees.act = 'E')
            AND actor_actees.actor = pdads.sname
            AND actor_actees.actee = maternities.mom)
    AS estrous_me
    , (SELECT count(*)
        FROM actor_actees
        WHERE actor_actees.date < maternities.zdate
            AND actor_actees.date >= maternities.zdate - 5
            AND actor_actees.act = 'C'
            AND actor_actees.actor = pdads.sname
            AND actor_actees.actee = maternities.mom)
    AS estrous_c
FROM maternities
JOIN biograph AS pdads
    ON (pdads.sname
        IN (SELECT dadmembers.sname
            FROM members AS dadmembers
            JOIN members AS mommembers
            ON (mommembers.date = dadmembers.date
                AND mommembers.supergroup = dadmembers.supergroup)
            WHERE dadmembers.sname = pdads.sname
                AND dadmembers.date < maternities.zdate
                AND dadmembers.date >= maternities.zdate - 5
                AND mommembers.sname = maternities.mom
                AND mommembers.date < maternities.zdate
                AND mommembers.date >= maternities.zdate - 5))
LEFT OUTER JOIN rankdates
    ON (rankdates.sname = pdads.sname)
LEFT OUTER JOIN maturedates
WHERE pdads.sex = 'M'
    -- Speed things up by eliminating potential dads
    -- who could not possibly interpolate into the mom's group
    -- during the fertile period.
    AND pdads.statdate >= maternities.zdate - 5 - 14
    -- Potential dad must be at least 2192 days old
    -- (approximately 6 years) on the zdate.
**Figure 73: Entity Relationship Diagram of the foundation of the POTENTIAL_DADS View**

* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.
Figure 74: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View which places the mother and potential father in the same group during the fertile period.
Figure 75: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View having easily computed columns

* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.
**This subquery on ACTOR_ACTEES is repeated twice in the view, once to compute Estrous_me and once to compute Estrous_c.**

* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.

**Figure 76: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View involving social interactions**
3.28 The PROPORTIONAL_RANKS View

WITH num_indivs AS (  
    SELECT ranks.rnkdate  
      , ranks.grp  
      , ranks.rnktype  
      , count(*) AS num_members  
    FROM ranks  
    GROUP BY ranks.rnkdate, ranks.grp, ranks.rnktype)

SELECT ranks.rnkid AS rnkid  
  , ranks.sname AS sname  
  , ranks.rnkdate AS rnkdate  
  , ranks.grp AS grp  
  , ranks.rnktype AS rnktype  
  , ranks.rank AS ordrank  
  , CASE  
    WHEN num_indivs.num_members = 1 THEN 1::numeric  
    ELSE 1 - ((ranks.rank - 1)::numeric / (num_indivs.num_members - 1):: numeric)  
  END::numeric(5,4) AS proprank  
FROM ranks  
JOIN num_indivs  
on (num_indivs.rnkdate = ranks.rnkdate  
AND num_indivs.grp = ranksgrp  
AND num_indivs.rnktype = ranks.rnktype);

Figure 77: Query Defining the PROPORTIONAL_RANKS View

* NUM_INDIVS is a subquery from RANKS, in which the number of RANKS rows (grouped by Rnkdate, Grp, and Rnktype) is counted. It does not appear anywhere as an independent entity.

Figure 78: Entity Relationship Diagram of the PROPORTIONAL_RANKS View
3.29 The QUADS View

SELECT quad_data.quad AS quad
    , ST_X(quad_data.xyloc) AS x
    , ST_Y(quad_data.xyloc) AS y
    , quad_data.aerial AS aerial
FROM quad_data;

Figure 79: Query Defining the QUADS View

```
+-----------------+---------------+---------------+-------------+
| QUADS | | | |
+-----------------+---------------+---------------+-------------+
| Quad (Quad) | | | |
| (X) | | | |
| (Y) | | | |
| Aerial (Aerial) | | | |
```

Figure 80: Entity Relationship Diagram of the QUADS View

3.30 The SEXSKINS_CYCLES and SEXSKINS_CYCLES_SORTED Views

SELECT cycles.cid AS cid
    , cycles.sname AS sname
    , cycles.seq AS seq
    , cycles.series AS series
    , sexskins.sxid AS sxid
    , sexskins.date AS date
    , sexskins.size AS size
FROM sexskins, cycles
WHERE cycles.cid = sexskins.cid
ORDER BY cycles.sname, sexskins.date;

Figure 81: Query Defining the SEXSKINS_CYCLES View
Figure 82: Entity Relationship Diagram of the SEXSKINS_CYCLES View
### 3.31 The SWERB view

```sql
SELECT swerb_data.swid AS swid,
 swerb_departs_data.did AS did,
 swerb_data.time AS time,
 swerb_bes.beid AS beid,
 swerb_bes.focal_grp AS focal_grp,
 swerb_bes.seq AS seq,
 swerb_data.event AS event,
 swerb_data.seen_grp AS seen_grp,
 swerb_bes.besid AS besid,
 swerb_bes.lone Animal AS lone_animal,
 swerb_data.quad AS quad,
 CASE
 WHEN swerb_data.quad IS NOT NULL
 THEN 'quad'
 WHEN swerb_data.xyloc IS NULL
 THEN 'n/a'
 ELSE 'gps'
 END AS xysource,
 COALESCE(ST_X(swerb_data.xyloc), ST_X(quad_data.xyloc)) AS x,
 COALESCE(ST_Y(swerb_data.xyloc), ST_Y(quad_data.xyloc)) AS y,
 swerb_data.altitude AS altitude,
 swerb_data.pdop AS pdop,
 swerb_data.accuracy AS accuracy,
 swerb_data.subgroup AS subgroup,
 swerb_data.ogdistance AS ogdistance,
 swerb_data.gps_datetime AS gps_datetime,
 swerb_data.garmincode AS garmincode,
 swerb_data.predator AS predator,
 swerb_loc_data.loc AS loc,
 swerb_loc_data.adcode AS adcode,
 adcodes.adn AS adn,
 swerb_loc_data.loc_status AS loc_status,
 swerb_loc_data.adtime AS adtime,
 ST_X(swerb_loc_gps.xyloc) AS second_x,
 ST_Y(swerb_loc_gps.xyloc) AS second_y,
 swerb_loc_gps.altitude AS second_altitude,
 swerb_loc_gps.pdop AS second_pdop,
 swerb_loc_gps.accuracy AS second_accuracy,
 swerb_loc_gps.gps_datetime AS second_gps_datetime,
 swerb_loc_gps.garmincode AS second_garmincode,
 swerb_bes.start AS start,
 swerb_bes.btimeest AS btimeest,
 swerb_bes.bsource AS bsource,
 swerb_bes.stop AS stop,
 swerb_bes.etimeest AS etimeest,
 swerb_bes.esource AS esource,
 swerb_bes.is_effort AS is_effort,
 swerb_departs_gps.gps AS gps,
 swerb_bes.notes AS notes
FROM swerb_data
LEFT OUTER JOIN quad_data
 ON (quad_data.quad = swerb_data.quad)
JOIN swerb_bes
 ON (swerb_bes.beid = swerb_data.beid)
JOIN swerb_departs_data
 ON (swerb_departs_data.did = swerb_bes.did)
LEFT OUTER JOIN swerb_departs_gps
 ON (swerb_departs_gps.did = swerb_bes.did)
LEFT OUTER JOIN swerb_loc_data
```
Figure 84: Entity Relationship Diagram of the SWERB View
3.32  The SWERB_DEPARTS view

```
SELECT swerb_departs_data.did AS did,
 swerb_departs_data.date AS date,
 swerb_departs_data.time AS time,
 ST_X(swerb_departs_gps.xyloc) AS x,
 ST_Y(swerb_departs_gps.xyloc) AS y,
 swerb_departs_gps.altitude AS altitude,
 swerb_departs_gps.pdop AS pdop,
 swerb_departs_gps.accuracy AS accuracy,
 swerb_departs_gps.gps AS gps,
 swerb_departs_gps.garmincode AS garmincode
FROM swerb_departs_data
 LEFT OUTER JOIN swerb_departs_gps
 ON (swerb_departs_gps.did = swerb_departs_data.did);
```

Figure 85: Query Defining the SWERB_DEPARTS View

3.33  The SWERB_LOC_GPS_XY view

```
SELECT swerb_loc_gps.swid AS swid,
 ST_X(swerb_loc_gps.xyloc) AS x,
 ST_Y(swerb_loc_gps.xyloc) AS y,
 swerb_loc_gps.altitude AS altitude,
 swerb_loc_gps.pdop AS pdop,
 swerb_loc_gps.accuracy AS accuracy,
 swerb_loc_gps.gps_datetime AS gps_datetime,
 swerb_loc_gps.garmincode AS garmincode
FROM swerb_loc_gps;
```

Figure 87: Query Defining the SWERB_LOC_GPS_XY View
3.34 The SWERB_LOCS view

```
SELECT swerb_loc_data.swid AS swid,
 swerb_loc_data.loc AS loc,
 swerb_loc_data.adcode AS adcode,
 adcodes.adn AS adn,
 swerb_loc_data.loc_status AS loc_status,
 swerb_loc_data.adtime AS time
FROM swerb_loc_data
JOIN adcodes ON (adcodes.adcode = swerb_loc_data.adcode);
```

Figure 89: Query Defining the SWERB_LOCS View
3.35 The SWERB_UPLOAD view

```sql
SELECT NULL::TEXT AS header,
 NULL::TEXT AS name,
 NULL::TEXT AS description,
 NULL::TEXT AS type,
 NULL::TEXT AS position,
 NULL::TEXT AS altitude,
 NULL::TEXT AS depth,
 NULL::TEXT AS proximity,
 NULL::TEXT AS display_mode,
 NULL::TEXT AS color,
 NULL::TEXT AS symbol,
 NULL::TEXT AS facility,
 NULL::TEXT AS city,
 NULL::TEXT AS state,
 NULL::TEXT AS country,
 NULL::TEXT AS pdop,
 NULL::TEXT AS accuracy,
 NULL::TEXT AS quad,
 NULL::TEXT AS date,
 NULL::TEXT AS timeest,
 NULL::TEXT AS source,
 NULL::TEXT AS lone_animal,
 NULL::TEXT AS is_effort,
 NULL::BOOLEAN AS secondary_ad,
 NULL::BOOLEAN AS be_has_coords,
 NULL::TEXT AS notes
WHERE _raise_babase_exception('Cannot select SWERB_UPLOAD'
 || ': The only use of the SWERB_UPLOAD view is to insert'
 || ' new data into the SWERB portion of babase');
```

Figure 91: Query Defining the SWERB_UPLOAD View

The SWERB_UPLOAD view is used only to insert data into the SWERB portion of Babase. Since it cannot be queried and the semantics of the uploaded file varies by line it has no ER diagram.

Figure 92: Entity Relationship Diagram of the SWERB_UPLOAD View
3.36 The TISSUES View

```
SELECT tissue_data.tid AS tid,
 tissue_data.locid,
 locations.institution AS institution,
 locations.location AS location,
 local_1.localid AS localid_1,
 local_2.localid AS localid_2,
 tissue_data.uiid AS uiid,
 unique_indivs.popid AS popid,
 unique_indivs.individ AS individ,
 biograph.sname AS sname,
 tissue_data.name_on_tube AS name_on_tube,
 tissue_data.collection_date AS collection_date,
 tissue_data.collection_time AS collection_time,
 tissue_data.tissue_type AS tissue_type,
 tissue_data.storage_medium AS storage_medium,
 tissue_data.misid_status AS misid_status,
 tissue_data.notes AS notes
FROM tissue_data
JOIN locations
 ON locations.locid = tissue_data.locid
JOIN unique_indivs
 ON unique_indivs.uiid = tissue_data.uiid
LEFT JOIN biograph
 ON biograph.bioid::text = unique_indivs.individ
 AND unique_indivs.popid = 1
LEFT JOIN tissue_local_ids AS local_1
 ON local_1.tid = tissue_data.tid
 AND local_1.institution = 1
LEFT JOIN tissue_local_ids AS local_2
 ON local_2.tid = tissue_data.tid
 AND local_2.institution = 2;
```

Figure 93: Query Defining the TISSUES View
3.37 The ULNA_STATS View

```sql
SELECT ulnas.dartid AS dartid,
 count(*) AS ulsamps,
 avg(ulnas.ullength) AS ullength_mean,
 stddev(ulnas.ullength) AS ullength_stddev,
 avg(ulnas.ulunadjusted) AS ulunadjusted_mean,
 stddev(ulnas.ulunadjusted) AS ulunadjusted_stddev
FROM ulnas
GROUP BY ulnas.dartid;
```

Figure 94: Entity Relationship Diagram of the TISSUES View

Figure 95: Query Defining the ULNA_STATS View
Figure 96: Entity Relationship Diagram of the ULNA_STATS View
3.38 The TESTES_ARC_STATS View

```sql
SELECT testesdartids.dartid AS dartid
 , testesllength.testllengthsamps AS testllengthsamps
 , testesllength.testllength_mean AS testllength_mean
 , testesllength.testllength_stddev AS testllength_stddev
 , testeslwidth.testlwidthsamps AS testlwidthsamps
 , testeslwidth.testlwidth_mean AS testlwidth_mean
 , testeslwidth.testlwidth_stddev AS testlwidth_stddev
 , testesrlength.testrlengthsamps AS testrlengthsamps
 , testesrlength.testrlength_mean AS testrlength_mean
 , testesrlength.testrlength_stddev AS testrlength_stddev
 , testesrwidth.testrwidthsamps AS testrwidthsamps
 , testesrwidth.testrwidth_mean AS testrwidth_mean
 , testesrwidth.testrwidth_stddev AS testrwidth_stddev
FROM (SELECT testes_arc.dartid
 FROM testes_arc
 GROUP BY testes_arc.dartid)
 AS testesdartids
LEFT OUTER JOIN
 (SELECT testes_arc.dartid AS llengthdartid
 , count(*) AS testllengthsamps
 , avg(testes_arc.testlength) AS testllength_mean
 , stddev(testes_arc.testlength) AS testllength_stddev
 FROM testes_arc
 WHERE testes_arc.testside = 'L'
 AND testes_arc.testlength IS NOT NULL
 GROUP BY testes_arc.dartid)
 AS testesllength
ON testesllength.llengthdartid = testesdartids.dartid
LEFT OUTER JOIN
 (SELECT testes_arc.dartid AS lwidthdartid
 , count(*) AS testlwidthsamps
 , avg(testes_arc.testwidth) AS testlwidth_mean
 , stddev(testes_arc.testwidth) AS testlwidth_stddev
 FROM testes_arc
 WHERE testes_arc.testside = 'L'
 AND testes_arc.testwidth IS NOT NULL
 GROUP BY testes_arc.dartid)
 AS testeslwidth
ON testeslwidth.lwidthdartid = testesdartids.dartid
LEFT OUTER JOIN
 (SELECT testes_arc.dartid AS rlengthdartid
 , count(*) AS testrlengthsamps
 , avg(testes_arc.testlength) AS testrlength_mean
 , stddev(testes_arc.testlength) AS testrlength_stddev
 FROM testes_arc
 WHERE testes_arc.testside = 'R'
 AND testes_arc.testlength IS NOT NULL
 GROUP BY testes_arc.dartid)
 AS testesrlength
ON testesrlength.rlengthdartid = testesdartids.dartid
LEFT OUTER JOIN
 (SELECT testes_arc.dartid AS rwidthdartid
 , count(*) AS testrwidthsamps
 , avg(testes_arc.testwidth) AS testrwidth_mean
 , stddev(testes_arc.testwidth) AS testrwidth_stddev
 FROM testes_arc
 WHERE testes_arc.testside = 'R'
 AND testes_arc.testwidth IS NOT NULL
 GROUP BY testes_arc.dartid)
 AS testesrwidth
ON testesrwidth.rwidthdartid = testesdartids.dartid;
```

Figure 97: Query Defining the TESTES_ARC_STATS View
Figure 98: Entity Relationship Diagram of the TESTES_ARC_STATS View

- Computed columns marked with a plus sign are not diagrammed. Their computation is as with the "left testicle length" columns except for being performed on values concerning the right testicle and/or the testicle width as indicated in the column name.
3.39 The TESTES_DIAM_STATS View

SELECT testesdartids.dartid AS dartid,
    testeslength.testlengthsamps AS testlengthsamps,
    testeslength.testlength_mean AS testlength_mean,
    testeslength.testlength_stddev AS testlength_stddev,
    testeswidth.testwidthsamps AS testwidthsamps,
    testeswidth.testwidth_mean AS testwidth_mean,
    testeswidth.testwidth_stddev AS testwidth_stddev
FROM (SELECT testes_diam.dartid
    FROM testes_diam
    GROUP BY testes_diam.dartid)
    AS testesdartids
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS llengthdartid,
        count(*) AS testlengthsamps,
        avg(testes_diam.testlength) AS testlength_mean,
        stddev(testes_diam.testlength) AS testlength_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'L'
        AND testes_diam.testlength IS NOT NULL
    GROUP BY testes_diam.dartid)
    AS testesllength
ON testesllength.llengthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS lwidthdartid,
        count(*) AS testwidthsamps,
        avg(testes_diam.testwidth) AS testwidth_mean,
        stddev(testes_diam.testwidth) AS testwidth_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'L'
        AND testes_diam.testwidth IS NOT NULL
    GROUP BY testes_diam.dartid)
    AS testeslwidth
ON testeslwidth.lwidthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS rlengthdartid,
        count(*) AS testlengthsamps,
        avg(testes_diam.testlength) AS testlength_mean,
        stddev(testes_diam.testlength) AS testlength_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'R'
        AND testes_diam.testlength IS NOT NULL
    GROUP BY testes_diam.dartid)
    AS testesrlength
ON testesrlength.rlengthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS rwidthdartid,
        count(*) AS testwidthsamps,
        avg(testes_diam.testwidth) AS testwidth_mean,
        stddev(testes_diam.testwidth) AS testwidth_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'R'
        AND testes_diam.testwidth IS NOT NULL
    GROUP BY testes_diam.dartid)
    AS testesrwidth
ON testesrwidth.rwidthdartid = testesdartids.dartid;
Figure 100: Entity Relationship Diagram of the TESTES_DIAM_STATS View
### 3.40 The WP_DETAILS_AFFECTEDPARTS View

```sql
FROM wp_reports
JOIN wp_details
ON wp_details.wprid = wp_reports.wprid
LEFT JOIN wp_affectedparts
ON wp_affectedparts.wpdid = wp_details.wpdid
LEFT JOIN bodyparts
ON bodyparts.bpid = wp_affectedparts.bodypart;
```

Figure 101: Query Defining the WP_DETAILS_AFFECTEDPARTS View

Figure 102: Entity Relationship Diagram of the WP_DETAILS_AFFECTEDPARTS View
3.41 The WP_HEALS View

WITH concat_observers AS (SELECT wprid
    , string_agg(observer, '/' ORDER BY wpoid) as observers
    FROM wp_observers
    GROUP BY wprid)
SELECT wp_reports.wprid AS wprid,
    wp_reports.wid AS wid,
    wp_reports.date AS reportdate,
    wp_reports.time AS reporttime,
    concat_observers.observers AS observers,
    wp_reports.sname AS sname,
    wp_reports.grp AS grp,
    wp_reports.observercomments AS observercomments,
    wp_reports.reportstate AS reportstate,
    wp_details.wpdid AS wpdid,
    wp_details.woundpathcode AS woundpathcode,
    wp_details.cluster AS cluster,
    wp_details.maxdimension AS maxdimension,
    wp_details.impairslocomotion AS impairslocomotion,
    wp_details.infectionsigns AS infectionsigns,
    wp_details.notes AS detailnotes,
    wp_affectedparts.wpaid AS wpaid,
    wp_affectedparts.bodypart AS bodypart,
    bodyparts.bodyside AS bodyside,
    bodyparts.innerouter AS innerouter,
    bodyparts.bodyregion AS bodyregion,
    wp_affectedparts.quantity_affecting_part AS quantity_affecting_part,
    wp_healupdates.wphid AS wphid,
    wp_healupdates.date AS healdate,
    wp_healupdates.healstatus AS healstatus,
    wp_healupdates.notes AS healnotes
FROM wp_healupdates
LEFT JOIN wp_affectedparts
ON wp_affectedparts.wpaid = wp_healupdates.wpaid
LEFT JOIN bodyparts
ON bodyparts.bpdid = wp_affectedparts.bodypart
LEFT JOIN wp_details
ON wp_details.wpdid = COALESCE(wp_affectedparts.wpdid, wp_healupdates.wpdid)
LEFT JOIN wp_reports
ON wp_reports.wprid = COALESCE(wp_details.wprid, wp_healupdates.wprid)
LEFT JOIN concat_observers
ON concat_observers.wprid = wp_reports.wprid;

Figure 103: Query Defining the WP_HEALS View
Figure 104: Entity Relationship Diagram of the WP_HEALS View, Overall
Figure 105: Entity Relationship Diagram of the WP_HEALS View for rows with an update to a wound/pathology report
Figure 106: Entity Relationship Diagram of the WP_HEALS View for rows with an update to a wound/pathology cluster

- WP_HEALUPDATES
  - WPId (WPHId)
  - WPId
  - WPDId
  - Wld
  - Date (HealDate)
  - HealStatus * (HealStatus)
  - Notes (HealNotes)

- WP_DETAILS
  - WPId (WPDId)
  - WPRId
  - WoundPathCode * (WoundPathCode)
  - Cluster (Cluster)
  - MaxDimension (MaxDimension)
  - ImpairsLocomotion (ImpairsLocomotion)
  - InfectionSigns (InfectionSigns)
  - Notes (DetailNotes)

- WP_REPORTS
  - WPId (WPId)
  - Wld
  - Date (ReportDate)
  - Time (ReportTime)
  - Sname (Sname)
  - Gnp (Gnp)
  - ObserverComments (ObserverComments)
  - ReportState * (ReportState)

- CONCAT_OBSERVERS
  - WPId
  - Observer * (Observer)
Figure 107: Entity Relationship Diagram of the WP_HEALS View for rows with an update to an affected body part
3.42 The WP_REPORTS_OBSERVERS View

WITH concat_observers AS (SELECT wprid, string_agg(observer, '/') ORDER BY wpoid) AS observers
FROM wp_observers
GROUP BY wprid)

SELECT wp_reports.wprid AS wprid, wp_reports.wid AS wid, wp_reports.date AS date, wp_reports.time AS time, concat_observers.observers AS observers, wp_reports.sname AS sname, wp_reports.grp AS grp, wp_reports.observercomments AS observercomments, wp_reports.reportstate AS reportstate
FROM wp_reports
LEFT JOIN concat_observers
ON concat_observers.wprid = wp_reports.wprid;

Figure 108: Query Defining the WP_REPORTS_OBSERVERS View

Figure 109: Entity Relationship Diagram of the WP_REPORTS_OBSERVERS View

4 Views Which Add Gid To Tables

In addition to the above views there are a number of views which produce the group of a referenced individual as of a pertinent date. These views are all named after the table from which they are derived, with the addition of the suffixed _GRP. They are nearly identical to the table from which they derive, differing only by the addition of a column named Grp.

The only operation allowed on these views is SELECT. INSERT, UPDATE, and DELETE are not allowed.
4.1 The BIRTH_GRP View

SELECT biograph.*, members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
    AND members.date = CAST(biograph.birth AS DATE);

Figure 110: Query Defining the BIRTH_GRP View

---

4.2 The ENTRYDATE_GRP View

SELECT biograph.*, members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
    AND members.date = CAST(biograph.entrydate AS DATE);

Figure 112: Query Defining the ENTRYDATE_GRP View
4.3 The `STATDATE_GRP` View

```sql
SELECT biograph.*, members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
 AND members.date = CAST(biograph.statdate AS DATE);
```

Figure 114: Query Defining the `STATDATE_GRP` View

```
<table>
<thead>
<tr>
<th>BIOGRAPH</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Statdate (Statdate)</td>
<td>Date (Statdate)</td>
</tr>
<tr>
<td>Remainder of columns in BIOGRAPH...</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>
```

Figure 115: Entity Relationship Diagram of the `STATDATE_GRP` View

4.4 The `CONSORTDATES_GRP` View

```sql
SELECT consortdates.*, members.grp AS grp
FROM members, consortdates
WHERE members.sname = consortdates.sname
 AND members.date = CAST(consortdates.consorted AS DATE);
```

Figure 116: Query Defining the `CONSORTDATES_GRP` View

```
<table>
<thead>
<tr>
<th>CONSORTDATES</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Consorted (Consorted)</td>
<td>Date (Consorted)</td>
</tr>
<tr>
<td>Remainder of columns in CONSORTDATES...</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>
```

Figure 117: Entity Relationship Diagram of the `CONSORTDATES_GRP` View
4.5 The CYCGAPDAYS_GRP View

SELECT cycgapdays.*
    , members.grp AS grp
FROM members, cycgapdays
WHERE members.sname = cycgapdays.sname
    AND members.date = CAST(cycgapdays.date AS DATE);

Figure 118: Query Defining the CYCGAPDAYS_GRP View

<table>
<thead>
<tr>
<th>CYCGAPDAYS</th>
<th>Individual in question</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenid (Cenid)</td>
<td></td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td></td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in CYCGAPDAYS....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 119: Entity Relationship Diagram of the CYCGAPDAYS_GRP View

4.6 The CYCGAPS_GRP View

SELECT cycgaps.*
    , members.grp AS grp
FROM members, cycgaps
WHERE members.sname = cycgaps.sname
    AND members.date = CAST(cycgaps.date AS DATE);

Figure 120: Query Defining the CYCGAPS_GRP View

<table>
<thead>
<tr>
<th>CYCGAPS</th>
<th>Individual in question</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gapid (Gapid)</td>
<td></td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td></td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in CYCGAPS....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 121: Entity Relationship Diagram of the CYCGAPS_GRP View
4.7 The CYCSTATS_GRP View

```sql
SELECT cycstats.*
 , members.grp AS grp
FROM members, cycstats
WHERE members.sname = cycstats.sname
 AND members.date = CAST(cycstats.date AS DATE);
```

Figure 122: Query Defining the CYCSTATS_GRP View

![Entity Relationship Diagram of the CYCSTATS_GRP View](image)

4.8 The DARTINGS_GRP View

```sql
SELECT dartings.*
 , members.grp AS grp
FROM members, dartings
WHERE members.sname = dartings.sname
 AND members.date = CAST(dartings.date AS DATE);
```

Figure 124: Query Defining the DARTINGS_GRP View

![Entity Relationship Diagram of the DARTINGS_GRP View](image)
4.9 The DISPERSEDATES_GRP View

SELECT dispersedates.*
 , members.grp AS grp
FROM members, dispersedates
WHERE members.sname = dispersedates.sname
 AND members.date = CAST(dispersedates.dispersed AS DATE);

Figure 126: Query Defining the DISPERSEDATES_GRP View

<table>
<thead>
<tr>
<th>DISPERSEDATES</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Dispersed (Dispersed)</td>
<td>Date (Dispersed)</td>
</tr>
<tr>
<td>Remainder of columns in DISPERSEDATES...</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>

Figure 127: Entity Relationship Diagram of the DISPERSEDATES_GRP View

4.10 The MATUREDATES_GRP View

SELECT maturedates.*
 , members.grp AS grp
FROM members, maturedates
WHERE members.sname = maturedates.sname
 AND members.date = CAST(maturedates.matured AS DATE);

Figure 128: Query Defining the MATUREDATES_GRP View

<table>
<thead>
<tr>
<th>MATUREDATES</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Matured (Matured)</td>
<td>Date (Matured)</td>
</tr>
<tr>
<td>Remainder of columns in MATUREDATES...</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>

Figure 129: Entity Relationship Diagram of the MATUREDATES_GRP View
4.11 The MDINTERVALS_GRP View

SELECT mdintervals.*
    , members.grp AS grp
FROM members, mdintervals
WHERE members.sname = mdintervals.sname
    AND members.date = CAST(mdintervals.date AS DATE);

Figure 130: Query Defining the MDINTERVALS_GRP View

<table>
<thead>
<tr>
<th>MDINTERVALS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDlid (MDlid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
</tr>
<tr>
<td>Remainder of columns in MDINTERVALS....</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>

Figure 131: Entity Relationship Diagram of the MDINTERVALS_GRP View

4.12 The MMINTERVALS_GRP View

SELECT mmintervals.*
    , members.grp AS grp
FROM members, mmintervals
WHERE members.sname = mmintervals.sname
    AND members.date = CAST(mmintervals.date AS DATE);

Figure 132: Query Defining the MMINTERVALS_GRP View

<table>
<thead>
<tr>
<th>MMINTERVALS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMlid (MMlid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
</tr>
<tr>
<td>Remainder of columns in MMINTERVALS....</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>

Figure 133: Entity Relationship Diagram of the MMINTERVALS_GRP View
4.13 The PCSKINS_GRP View

SELECT pcskins.*
   , members.grp AS grp
FROM members, pcskins
WHERE members.sname = pcskins.sname
   AND members.date = CAST(pcskins.date AS DATE);

Figure 134: Query Defining the PCSKINS_GRP View

4.14 The RANKDATES_GRP View

SELECT rankdates.*
   , members.grp AS grp
FROM members, rankdates
WHERE members.sname = rankdates.sname
   AND members.date = CAST(rankdates.ranked AS DATE);

Figure 136: Query Defining the RANKDATES_GRP View
4.15 The REPSTATS_GRP View

SELECT repstats.*
    , members.grp AS grp
FROM members, repstats
WHERE members.sname = repstats.sname
    AND members.date = CAST(repstats.date AS DATE);

Figure 138: Query Defining the REPSTATS_GRP View

<table>
<thead>
<tr>
<th>REPSTATS</th>
<th>Individual in question</th>
</tr>
</thead>
<tbody>
<tr>
<td>RId (Rid)</td>
<td></td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td></td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
</tr>
<tr>
<td>Remainder of columns in REPSTATS...</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEMBERS</th>
<th>Date in question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Grp (Grp)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 139: Entity Relationship Diagram of the REPSTATS_GRP View