The Babase Pocket Reference Guide

A Technical Specification Summary
This material is based upon work supported by the National Science Foundation under Grant Nos. 0323553 and 0323596.
COLLABORATORS

<table>
<thead>
<tr>
<th>ACTION</th>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITTEN BY</td>
<td>Karl O. Pinc, PhD. Jeanne Altmann, PhD. Susan C. Alberts, and Leah Gerber</td>
<td>January 18, 2019</td>
</tr>
<tr>
<td>ER Diagram layout and conversion to Dia</td>
<td>Leah Gerber</td>
<td>January 18, 2019</td>
</tr>
<tr>
<td>DocBook formatting</td>
<td>Anne Hubbard</td>
<td>January 18, 2019</td>
</tr>
<tr>
<td>DocBook formatting</td>
<td>Karl Pinc</td>
<td>January 18, 2019</td>
</tr>
</tbody>
</table>

REVISION HISTORY

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>NAME</th>
</tr>
</thead>
</table>
Contents

1 Babase Summarized 1

2 The Babase ER Diagrams 1

3 The Babase Views 22
 3.1 The ACTOR_ACTEES View 23
 3.2 The ANESTH_STATS View 24
 3.3 The BODYTEMP_STATS View 25
 3.4 The CENSUS_DEMOG and CENSUS_DEMOG_SORTED Views 26
 3.5 The CHEST_STATS View 27
 3.6 The CROWN_RUMP_STATS View 28
 3.7 The CYCLES_SEXSKINS and CYCLES_SEXSKINS_SORTED Views 28
 3.8 The CYCPOINTS_CYCLES and CYCPOINTS_CYCLES_SORTED Views 29
 3.9 The DSAMPLES View 31
 3.10 The DEMOG_CENSUS and DEMOG_CENSUS_SORTED Views 32
 3.11 The DENT_CODES View 34
 3.12 The DENT_SITES View 37
 3.13 The INTERACT and INTERACT_SORTED Views 39
 3.14 The MATERNITIES View 40
 3.15 The MIN_MAXS View 42
 3.16 The MIN_MAXS_SORTED View 44
 3.17 The MPI_EVENTS View 47
 3.18 The MTD_CYCLES View 49
 3.19 The PARENTS View 51
 3.20 The PCSKINS_SORTED View 52
 3.21 The PCV_STATS View 53
 3.22 The POINTS and POINTS_SORTED Views 54
 3.23 The POTENTIAL_DADS View 56
 3.24 The PROPORTIONAL_RANKS View 61
 3.25 The QUADS View 62
 3.26 The SEXSKINS_CYCLES and SEXSKINS_CYCLES_SORTED Views 62
 3.27 The SWERB View 65
 3.28 The SWERB_DEPARTS View 67
 3.29 The SWERB_LOC_GPS_XY View 67
 3.30 The SWERB_LOCs View 68
 3.31 The SWERB_UPLOAD View 69
 3.32 The ULNA_STATS View 69
 3.33 The TESTES_ARC_STATS View 72
 3.34 The TESTES_DIAM_STATS View 75
 3.35 The WP_DETAILS_AFFECTEDPARTS View 77
 3.36 The WP_REPORTS_OBSERVERS View 78
4 Views Which Add Gid To Tables

4.1 The BIRTH_GRP View ... 79
4.2 The ENTRYDATE_GRP View .. 79
4.3 The STATDATE_GRP View ... 80
4.4 The CONSORTDATES_GRP View ... 80
4.5 The CYCGAPDAYS_GRP View .. 81
4.6 The CYCGAPS_GRP View ... 81
4.7 The CYCSTATS_GRP View .. 82
4.8 The DARTINGS_GRP View .. 82
4.9 The DISPERSEDATES_GRP View .. 83
4.10 The MATUREDATES_GRP View ... 83
4.11 The MDINTERVALS_GRP View ... 84
4.12 The MMINTERVALS_GRP View ... 84
4.13 The PCSKINS_GRP View ... 85
4.14 The RANKDATES_GRP View ... 85
4.15 The REPSTATS_GRP View ... 86
List of Figures

1. Key to the Babase Entity Relationship Diagrams .. 1
2. Babase Group Membership Entity Relationship Diagram 3
3. Babase Life Events Entity Relationship Diagram ... 5
4. Babase Sexual Cycle Entity Relationship Diagram 8
5. Babase Sexual Cycle Day-To-Day Tables Entity Relationship Diagram 9
6. Babase Social Interactions Entity Relationship Diagram 10
7. Babase Multiparty Interactions Entity Relationship Diagram 11
8. Babase Darting Logistics and Morphology Entity and Relationship Diagram .. 12
9. Babase Darting Physiology Entity and Relationship Diagram 13
10. Babase Darting Samples Entity and Relationship Diagram 14
11. Babase Darting Teeth and Ticks Entity and Relationship Diagram 15
12. Babase Physical Traits Genetic Hybrid Score Data Entity Relationship Diagram .. 16
13. Babase Physical Traits Wounds and Pathologies Data Entity Relationship Diagram .. 17
14. Babase SWERB Core Tables Entity Relationship Diagram 18
15. Babase SWERB Grove/Waterhole Location Tables Entity Relationship Diagram .. 19
17. Babase WeatherHawk Data Entity Relationship Diagram 21
18. Warning Sub-System Entity Relationship Diagram 22
19. Query Defining the ACTOR_ACTEES View ... 23
20. Entity Relationship Diagram of the ACTOR_ACTEES View 24
21. Query Defining the ANESTH_STATS View .. 24
22. Entity Relationship Diagram of the ANESTH_STATS View 25
23. Query Defining the BODYTEMP_STATS View ... 25
24. Entity Relationship Diagram of the BODYTEMP_STATS View 26
25. Query Defining the CENSUS_DEMOG View ... 26
26. Entity Relationship Diagram of the CENSUS_DEMOG View 26
27. Query Defining the CHEST_STATS View ... 27
28. Entity Relationship Diagram of the CHEST_STATS View 27
29. Query Defining the CROWNRUMP_STATS View ... 28
30. Entity Relationship Diagram of the CROWNRUMP_STATS View 28
31. Query Defining the CYCLES_SEXSKINS View .. 28
32. Entity Relationship Diagram of the CYCLES_SEXSKINS View 28
33. Query Defining the CYCPOINTS_CYCLES View .. 29
34. Entity Relationship Diagram of the CYCPOINTS_CYCLES View 29
35. Query Defining the DSAMPLES View .. 31
36. Query Defining the DEMOG_CENSUS View ... 32
37. Entity Relationship Diagram of the DEMOG_CENSUS View 32
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Query Defining the DENT_CODES View</td>
</tr>
<tr>
<td>39</td>
<td>Entity Relationship Diagram of the DENT_CODES View</td>
</tr>
<tr>
<td>40</td>
<td>Query Defining the DENT_SITES View</td>
</tr>
<tr>
<td>41</td>
<td>Entity Relationship Diagram of the DENT_SITES View</td>
</tr>
<tr>
<td>42</td>
<td>Query Defining the INTERACT View</td>
</tr>
<tr>
<td>43</td>
<td>Entity Relationship Diagram of the INTERACT View</td>
</tr>
<tr>
<td>44</td>
<td>Query Defining the MATERNITIES View</td>
</tr>
<tr>
<td>45</td>
<td>Entity Relationship Diagram of the MATERNITIES View</td>
</tr>
<tr>
<td>46</td>
<td>Query Defining the MIN_MAXS View</td>
</tr>
<tr>
<td>47</td>
<td>Entity Relationship Diagram of the MIN_MAXS View</td>
</tr>
<tr>
<td>48</td>
<td>Query Defining the MIN_MAXS_SORTED View</td>
</tr>
<tr>
<td>49</td>
<td>Entity Relationship Diagram of the MIN_MAXS_SORTED View</td>
</tr>
<tr>
<td>50</td>
<td>Query Defining the MPI_EVENTS View</td>
</tr>
<tr>
<td>51</td>
<td>Entity Relationship Diagram of the MPI_EVENTS View</td>
</tr>
<tr>
<td>52</td>
<td>Query Defining the MTD_CYCLES View</td>
</tr>
<tr>
<td>53</td>
<td>Entity Relationship Diagram of the MTD_CYCLES View</td>
</tr>
<tr>
<td>54</td>
<td>Query Defining the PARENTS View</td>
</tr>
<tr>
<td>55</td>
<td>Entity Relationship Diagram of the PARENTS View</td>
</tr>
<tr>
<td>56</td>
<td>Query Defining the PCSKINS_SORTED View</td>
</tr>
<tr>
<td>57</td>
<td>Entity Relationship Diagram of the PCSKINS_SORTED View</td>
</tr>
<tr>
<td>58</td>
<td>Query Defining the PCV_STATS View</td>
</tr>
<tr>
<td>59</td>
<td>Entity Relationship Diagram of the PCV_STATS View</td>
</tr>
<tr>
<td>60</td>
<td>Query Defining the POINTS View</td>
</tr>
<tr>
<td>61</td>
<td>Entity Relationship Diagram of the POINTS View</td>
</tr>
<tr>
<td>62</td>
<td>Query Defining the POTENTIAL_DADS View</td>
</tr>
<tr>
<td>63</td>
<td>Entity Relationship Diagram of the foundation of the POTENTIAL_DADS View</td>
</tr>
<tr>
<td>64</td>
<td>Entity Relationship Diagram of that portion of the POTENTIAL_DADS View which places the mother and potential father in the same group during the fertile period</td>
</tr>
<tr>
<td>65</td>
<td>Entity Relationship Diagram of that portion of the POTENTIAL_DADS View having easily computed columns</td>
</tr>
<tr>
<td>66</td>
<td>Entity Relationship Diagram of that portion of the POTENTIAL_DADS View involving social interactions</td>
</tr>
<tr>
<td>67</td>
<td>Query Defining the PROPORTIONAL_RANKS View</td>
</tr>
<tr>
<td>68</td>
<td>Entity Relationship Diagram of the PROPORTIONAL_RANKS View</td>
</tr>
<tr>
<td>69</td>
<td>Query Defining the QUADS View</td>
</tr>
<tr>
<td>70</td>
<td>Entity Relationship Diagram of the QUADS View</td>
</tr>
<tr>
<td>71</td>
<td>Query Defining the SEXSKINS_CYCLES View</td>
</tr>
<tr>
<td>72</td>
<td>Entity Relationship Diagram of the SEXSKINS_CYCLES View</td>
</tr>
<tr>
<td>73</td>
<td>Query Defining the SWERB View</td>
</tr>
<tr>
<td>74</td>
<td>Entity Relationship Diagram of the SWERB View</td>
</tr>
<tr>
<td>75</td>
<td>Query Defining the SWERB_DEPARTS View</td>
</tr>
</tbody>
</table>
List of Tables

1. The Main Babase Tables .. 2
2. The Warning Sub-System Tables ... 3
3. The Babase Support Tables .. 4
4. The Warning Sub-System Support Tables 5
5. The Babase Views ... 6
6. The table_GRP Views .. 7
1 Babase Summarized

Warning
Tables which have names ending in ",_DATA" should not be used, there is always a view of the data in these tables that may be used in their place. Tables ending in ",_DATA" may change in future Babase minor releases, breaking queries and programs which use the table. Use of the corresponding views will ensure compatibility with future Babase releases.

2 The Babase ER Diagrams

The BABASE Database

At this time of this writing only males have data entered into RANKDATES in Babase:

1 At this time of this writing only males have data entered into RANKDATES in Babase:
<table>
<thead>
<tr>
<th>Group Membership and Life Events</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td>One row for each</td>
</tr>
<tr>
<td>ALTERNATE_SNAMES in Babase:</td>
<td>rescinded sname</td>
</tr>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>animal, including fetuses</td>
</tr>
<tr>
<td>CENSUS in Babase:</td>
<td>day each individual is (or is not) observed in a group</td>
</tr>
<tr>
<td>CONSORTDATED in Babase:</td>
<td>male who has a known first consortship</td>
</tr>
<tr>
<td>DEMOG in Babase:</td>
<td>mention of an individual’s presence in a group within a field textual note</td>
</tr>
<tr>
<td>DISPERSEDATES in Babase:</td>
<td>male who has left his maternal study group</td>
</tr>
<tr>
<td>GROUPS in Babase:</td>
<td>group (including solitary males)</td>
</tr>
<tr>
<td>MATUREDATES in Babase:</td>
<td>individual who is sexually mature</td>
</tr>
<tr>
<td>RANKDATES in Babase:</td>
<td>individual (^1) who has attained adult rank</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyzed: Group Membership and Life Events</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td>One row for each</td>
</tr>
<tr>
<td>DAD_DATA in Babase:</td>
<td>offspring having a paternity analysis</td>
</tr>
<tr>
<td>MEMBERS in Babase:</td>
<td>day each individual is alive</td>
</tr>
<tr>
<td>RANKS in Babase:</td>
<td>month each individual is ranked in each group</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyzed: Physical Traits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td>One row for each</td>
</tr>
<tr>
<td>HYBRIDGENE_ANALYSES in Babase:</td>
<td>analysis of genetic hybrid scores</td>
</tr>
<tr>
<td>HYBRIDGENESCORES in Babase:</td>
<td>genetic hybrid score for an individual from an analysis</td>
</tr>
<tr>
<td>WP_AFFECTEDPARTS in Babase:</td>
<td>body part affected by a specific wound/pathology</td>
</tr>
<tr>
<td>WPDETAILS in Babase:</td>
<td>wound or pathology cluster indicated on a report</td>
</tr>
<tr>
<td>WP_HEALUPDATES in Babase:</td>
<td>update on progress of wound/pathology healing</td>
</tr>
<tr>
<td>WP_REPORTS in Babase:</td>
<td>wound/pathology report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sexual Cycles</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td>One row for each</td>
</tr>
<tr>
<td>CYCGAPS in Babase:</td>
<td>female for each initiation or cessation of a continuous period of observation</td>
</tr>
<tr>
<td>CYCLES in Babase:</td>
<td>female’s cycle (complete or not)</td>
</tr>
<tr>
<td>CYCPOINTS in Babase:</td>
<td>Mdate (menses), Tdate (turgescence onset), or Ddate (deturgescence onset) date of each female</td>
</tr>
<tr>
<td>PCSKINS in Babase:</td>
<td>PCS color of each female</td>
</tr>
<tr>
<td>PREGS in Babase:</td>
<td>time a female becomes pregnant</td>
</tr>
<tr>
<td>SEXSKINS in Babase:</td>
<td>sexskin measurement of each female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Sexual Cycle Day-By-Day Tables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td>One row for each</td>
</tr>
<tr>
<td>CYCGAPDAYS in Babase:</td>
<td>female for each day within a period during which there is not continuous observation</td>
</tr>
<tr>
<td>CYCSTATS in Babase:</td>
<td>day each female is cycling -- by M, T and Ddates</td>
</tr>
<tr>
<td>MDINTERVALS in Babase:</td>
<td>day each female is cycling and is between M and Ddates</td>
</tr>
<tr>
<td>MMINTERVALS in Babase:</td>
<td>day each female is cycling -- by Mdates</td>
</tr>
<tr>
<td>Table 2: The Warning Sub-System Tables</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

INTEGRITY QUERIES in Babase:
- INTEGRITY QUERIES
 - query used to discover data integrity problems

INTEGRITY WARNINGS in Babase:
- INTEGRITY WARNINGS
 - data integrity problem discovered by the warning sub-system

Table

<table>
<thead>
<tr>
<th>Table</th>
<th>One row for each</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOGRAPH</td>
<td>Censuses and other events that place individual in a group</td>
</tr>
<tr>
<td>Bioid</td>
<td></td>
</tr>
<tr>
<td>Sname</td>
<td></td>
</tr>
<tr>
<td>Birth</td>
<td></td>
</tr>
<tr>
<td>Bstatus *</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Matgrp</td>
<td></td>
</tr>
<tr>
<td>Matgropconfidence *</td>
<td></td>
</tr>
<tr>
<td>Pid</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Stdate</td>
<td></td>
</tr>
<tr>
<td>Status *</td>
<td></td>
</tr>
<tr>
<td>Ocause</td>
<td></td>
</tr>
<tr>
<td>OcauseNatureConfidence *</td>
<td></td>
</tr>
<tr>
<td>OcauseAgentConfidence *</td>
<td></td>
</tr>
</tbody>
</table>

MEMBERS
- Member of a group on a day
- Group of an individual on a day

GROUPS
- Daily membership of the group

CENSUS
- Group of an individual’s census
- Demography note of placement
- Placement of individual in a group

DEMOG
- Individuals born into the group
- Censuses and other events which place (remove) individuals in (from) the group

Figure 2: Babase Group Membership Entity Relationship Diagram
General Support Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Id Column</th>
<th>Related Column(s)</th>
<th>One entry for every possible choice of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODYPARTS in Babase:</td>
<td>Bodypart</td>
<td>TICKS in Babase.; BODYPARTS in Babase.; WP_AFFECTEDPARTS in Babase.;</td>
<td>part of the body</td>
</tr>
<tr>
<td>OBSEVERS in Babase:</td>
<td>Initials</td>
<td>SAMPLES in Babase.: Observer in Babase.; WREADINGS in Babase.; RGSETUPS in Babase.;</td>
<td>person who records information</td>
</tr>
<tr>
<td>OBSERVER_ROLEs in Babase:</td>
<td>Initials</td>
<td>OBSERVERs in Babase.: Role in Babase.; OBSERVERs in Babase.: SWERB_Observer_Role in Babase.;</td>
<td>way in which a person can be involved in the data collection process</td>
</tr>
<tr>
<td>UNKSNAMES in Babase:</td>
<td>Unksname</td>
<td>NEIGHBORS in Babase.: Unksname in Babase.; SWERB_UPLOAD in Babase.; view</td>
<td>problem in identifying neighbor of focal during point sampling or in identifying a lone male in a SWERB other group observation</td>
</tr>
</tbody>
</table>

Group Membership and Life Events

<table>
<thead>
<tr>
<th>Table</th>
<th>Id Column</th>
<th>Related Column(s)</th>
<th>One entry for every possible choice of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTATUSes in Babase:</td>
<td>Bstatus</td>
<td>BIOGRAPH in Babase.; Bstatus in Babase.;</td>
<td>birthday estimation accuracy</td>
</tr>
<tr>
<td>CONFIDENCES in Babase:</td>
<td>Confidence</td>
<td>BIOGRAPH in Babase.; DcauseNatureConfidence in Babase.; BIOGRAPH in Babase.; DcauseAgentConfidence in Babase.; DISPERSEDATES in Babase.; BIOGRAPH in Babase.; BIOGRAPH in Babase.; Matgrpconf</td>
<td>degree of certitude in nature of death, agent of death, disperse date assignment, or maternal group assignment</td>
</tr>
<tr>
<td>DAD_SOFTWARE in Babase:</td>
<td>Software</td>
<td>DAD_DATA in Babase.; Software in Babase.;</td>
<td>software package used to perform genetic paternity analysis</td>
</tr>
<tr>
<td>DCAUSES in Babase:</td>
<td>Deause</td>
<td>BIOGRAPH in Babase.; Deause in Babase.;</td>
<td>cause of death</td>
</tr>
<tr>
<td>DEATHNATURES in Babase:</td>
<td>Nature</td>
<td>DCAUSES in Babase.; Nature in Babase.;</td>
<td>reason for death</td>
</tr>
<tr>
<td>DEMOGs in Babase:</td>
<td></td>
<td>DEMOG in Babase.</td>
<td></td>
</tr>
<tr>
<td>Table</td>
<td>Id Column</td>
<td>Related Column(s)</td>
<td>One entry for every possible choice of...</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>IQTYPES in Babase:</td>
<td>IQType</td>
<td>INTEGRITY QUERIES in Babase::Type in Babase:</td>
<td>kind of problem with data integrity</td>
</tr>
<tr>
<td>WARNING_REMARKS in Babase:</td>
<td>WRID</td>
<td>INTEGRITY WARNINGS in Babase::Category in Babase:</td>
<td>remark which might apply to more than one instance of questionable database integrity</td>
</tr>
</tbody>
</table>

Table 4: The Warning Sub-System Support Tables

Figure 3: Babase Life Events Entity Relationship Diagram
<table>
<thead>
<tr>
<th>View</th>
<th>One row for each</th>
<th>Purpose</th>
<th>Tables/Views used</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENSUS in Babase:</td>
<td>CENSUS in Babase: row</td>
<td>Maintenance of CENSUS in Babase: rows that are extended with DEMOG in Babase: information.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>CENSUS in Babase:</td>
<td>CENSUS in Babase: row</td>
<td>Maintenance of CENSUS in Babase: rows that are extended with DEMOG in Babase: information.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>CYCPOINTS_CYCLES in Babase:</td>
<td>CYCPOINTS in Babase: row</td>
<td>Maintenance of CYCPOINTS in Babase: rows that are extended with CYCLES in Babase: information.</td>
<td>CYCLES in Babase:, CYCPOINTS in Babase:</td>
</tr>
<tr>
<td>CYCPOINTS in Babase:</td>
<td>CYCPOINTS in Babase: row</td>
<td>The CYCPOINTS_CYCLES in Babase: view sorted by CYCLES in Babase: Sname in Babase:, by CYCPOINTS in Babase: Date in Babase:</td>
<td>CYCLES in Babase:, CYCPOINTS in Babase:</td>
</tr>
<tr>
<td>DEMOG_CENSUS in Babase:</td>
<td>DEMOG in Babase: row</td>
<td>Maintenance of DEMOG in Babase: rows.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>DEMOG in Babase:</td>
<td>DEMOG in Babase: row</td>
<td>Maintenance of DEMOG_CENSUS in Babase: rows in a pre-sorted fashion.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>GROUPS_HISTORY in Babase:</td>
<td>GROUPS in Babase: row</td>
<td>Depiction of GROUPS in Babase: rows in a more human-readable format.</td>
<td>GROUPS in Babase:</td>
</tr>
<tr>
<td>PARENTS in Babase:</td>
<td>BIOGRAPH in Babase: row</td>
<td>Easy access to parental information.</td>
<td>BIOGRAPH in Babase:, MATERNITIES in Babase:, MEMBERS in Babase:</td>
</tr>
<tr>
<td>POTENTIAL_DADS in Babase:</td>
<td></td>
<td>Completion of female reproductive event for every male more than 2192 days old (approximately 6 years) present in the mother’s group during her fertile period</td>
<td>MATERNITIES in Babase:, MEMBERS in Babase: (multiple times), ACCTOR_ACTEES in Babase: (multiple times), BIOGRAPH in Babase:, RANKDATES in Babase:, MATUREDATES in Babase:</td>
</tr>
<tr>
<td>PROPORTIONAL_RANKS in Babase:</td>
<td>RANKS in Babase: row</td>
<td>Automatic calculation of proportional ranks from the ordinal ranks in RANKS in Babase:</td>
<td>RANKS in Babase:</td>
</tr>
</tbody>
</table>

Physical Traits

<table>
<thead>
<tr>
<th>View</th>
<th>One row for each</th>
<th>Purpose</th>
<th>Tables/Views used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6: The table_GRP Views

<table>
<thead>
<tr>
<th>Table</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>BIRTH_GRP in Babase:</td>
</tr>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>ENTRYDATE_GRP in Babase:</td>
</tr>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>STATDATE_GRP in Babase:</td>
</tr>
<tr>
<td>CONSORTDATES in Babase:</td>
<td>CONSORTDATES_GRP in Babase:</td>
</tr>
<tr>
<td>CYCGAPDAYS in Babase:</td>
<td>CYCGAPDAYS_GRP in Babase:</td>
</tr>
<tr>
<td>CYCGAPS in Babase:</td>
<td>CYCGAPS_GRP in Babase:</td>
</tr>
<tr>
<td>CYCSTATS in Babase:</td>
<td>CYCSTATS_GRP in Babase:</td>
</tr>
<tr>
<td>DARTINGS in Babase:</td>
<td>DARTINGS_GRP in Babase:</td>
</tr>
<tr>
<td>DISPERSEDATES in Babase:</td>
<td>DISPERSEDATES_GRP in Babase:</td>
</tr>
<tr>
<td>MATUEREDATES in Babase:</td>
<td>MATUEREDATES_GRP in Babase:</td>
</tr>
<tr>
<td>MDINTERVALS in Babase:</td>
<td>MDINTERVALS_GRP in Babase:</td>
</tr>
<tr>
<td>MMINTERVALS in Babase:</td>
<td>MMINTERVALS_GRP in Babase:</td>
</tr>
<tr>
<td>PCSKINS in Babase:</td>
<td>PCSKINS_GRP in Babase:</td>
</tr>
<tr>
<td>RANKDATES in Babase:</td>
<td>RANKDATES_GRP in Babase:</td>
</tr>
<tr>
<td>REPSTATS in Babase:</td>
<td>REPSTATS_GRP in Babase:</td>
</tr>
</tbody>
</table>
Figure 4: Babase Sexual Cycle Entity Relationship Diagram
Figure 5: Babase Sexual Cycle Day-To-Day Tables Entity Relationship Diagram
Figure 6: Babase Social Interactions Entity Relationship Diagram
Figure 7: Babase Multiparty Interactions Entity Relationship Diagram
Figure 8: Babase Darting Logistics and Morphology Entity and Relationship Diagram
Figure 9: Babase Darting Physiology Entity and Relationship Diagram
Figure 10: Babase Darting Samples Entity and Relationship Diagram
Figure 11: Babase Darting Teeth and Ticks Entity and Relationship Diagram
Figure 12: Babase Physical Traits Genetic Hybrid Score Data Entity Relationship Diagram
Figure 13: Babase Physical Traits Wounds and Pathologies Data Entity Relationship Diagram
Figure 14: Babase SWERB Core Tables Entity Relationship Diagram
Figure 15: Babase SWERB Grove/Waterhole Location Tables Entity Relationship Diagram
Figure 16: Babase Manual Weather Data Entity Relationship Diagram
Figure 17: Babase WeatherHawk Data Entity Relationship Diagram
Figure 18: Warning Sub-System Entity Relationship Diagram

3 The Babase Views

For information on the operations (INSERT, UPDATE, DELETE) allowed by each view and their actions on the underlying tables see The Babase Views in Babase: of The Babase Reference Manual.
3.1 The ACTOR_ACTEES View

```sql
SELECT interact_data.iid AS iid,
       interact_data.sid AS sid,
       interact_data.act AS act,
       interact_data.date AS date,
       interact_data.start AS start,
       interact_data.stop AS stop,
       interact_data.observer AS observer,
       actor.partid AS actorid,
       COALESCE(actor.sname, '998':CHAR(3)) AS actor,
       (SELECT actorms.grp
        FROM members AS actorms
        WHERE actorms.sname = actor.sname
        AND actorms.date = interact_data.date) AS actor_grp,
       actee.partid AS acteeid,
       COALESCE(actee.sname, '998':CHAR(3)) AS actee,
       (SELECT acteems.grp
        FROM members AS acteems
        WHERE acteems.sname = actee.sname
        AND acteems.date = interact_data.date) AS actee_grp,
       interact_data.handwritten AS handwritten
FROM interact_data
LEFT OUTER JOIN parts AS actor
    ON (actor.iid = interact_data.iid AND actor.role = 'R')
LEFT OUTER JOIN parts AS actee
    ON (actee.iid = interact_data.iid AND actee.role = 'E');
```

Figure 19: Query Defining the ACTOR_ACTEES View
3.2 The ANESTH_STATS View

```sql
SELECT anesths.dartid AS dartid ,
       count(*) AS ansamps ,
       avg(anesths.anamount) AS anamount_mean ,
       stddev(anesths.anamount) AS anamount_stddev
FROM anesths
GROUP BY anesths.dartid;
```

Figure 21: Query Defining the ANESTH_STATS View
3.3 The BODYTEMP_STATS View

```
SELECT bodytemps.dartid AS dartid,
       count(*) AS btsamps,
       avg(bodytemps.btemp) AS btemp_mean,
       stddev(bodytemps.btemp) AS btemp_stddev
FROM bodytemps
GROUP BY bodytemps.dartid;
```

Figure 22: Entity Relationship Diagram of the ANESTH_STATS View

Figure 23: Query Defining the BODYTEMP_STATS View
3.4 The CENSUS_DEMOG and CENSUS_DEMOG_SORTED Views

```sql
SELECT census.cenid AS cenid,
       census.sname AS sname,
       census.date AS date,
       census.grp AS grp,
       census.status AS status,
       census.cen AS cen,
       demog.reference AS reference,
       demog.comment AS comment
FROM census LEFT OUTER JOIN demog ON (census.cenid = demog.cenid);
```

Figure 24: Entity Relationship Diagram of the BODYTEMP_STATS View

Figure 25: Query Defining the CENSUS_DEMOG View

Figure 26: Entity Relationship Diagram of the CENSUS_DEMOG View
3.5 The CHEST_STATS View

```
SELECT chests.dartid AS dartid,
       count(*) AS chsamps,
       avg(chests.chcircum) AS chcircum_mean,
       stddev(chests.chcircum) AS chcircum_stddev,
       avg(chests.chunadjusted) AS chunadjusted_mean,
       stddev(chests.chunadjusted) AS chunadjusted_stddev
FROM chests
GROUP BY chests.dartid;
```

Figure 27: Query Defining the CHEST_STATS View

Figure 28: Entity Relationship Diagram of the CHEST_STATS View
3.6 The CROWNRUMP_STATS View

```sql
SELECT crownrumps.dartid AS dartid
    , count(*) AS crsamps
    , avg(crownrumps.crlength) AS crlength_mean
    , stddev(crownrumps.crlength) AS crlength_stddev
FROM crownrumps
GROUP BY crownrumps.dartid;
```

Figure 29: Query Defining the CROWNRUMP_STATS View

![Entity Relationship Diagram of the CROWNRUMP_STATS View](image)

Figure 30: Entity Relationship Diagram of the CROWNRUMP_STATS View

3.7 The CYCLES_SEXSKINS and CYCLES_SEXSKINS_SORTED Views

```sql
SELECT cycles.cid AS cid
    , cycles.sname AS sname
    , cycles.seq AS seq
    , cycles.series AS series
    , sexskins.sxid AS sxid
    , sexskins.date AS date
    , sexskins.size AS size
FROM cycles LEFT OUTER JOIN sexskins ON (cycles.cid = sexskins.cid);
```

Figure 31: Query Defining the CYCLES_SEXSKINS View
3.8 The CYCPOINTS_CYCLES and CYCPOINTS_CYCLES_SORTED Views

```sql
SELECT cycles.cid AS cid
     , cycles.sname AS sname
     , cycles.seq AS seq
     , cycles.series AS series
     , cycpoints.cpid AS cpid
     , cycpoints.date AS date
     , cycpoints.edate AS edate
     , cycpoints.ldate AS ldate
     , cycpoints.code AS code
     , cycpoints.source AS source
FROM cycles, cycpoints
WHERE cycles.cid = cycpoints.cid;
```

Figure 33: Query Defining the CYCPOINTS_CYCLES View

Figure 34: Entity Relationship Diagram of the CYCPOINTS_CYCLES View
3.9 The DSAMPLES View

```
SELECT dartings.dartid,
       dartings.sname,
       dartings.date,
       members.grp,
       blood_unspecs.num AS bloodunspec,
       blood_paxgenes.num AS bloodpaxgene,
       blood_purpletops.num AS bloodpurpletops,
       blood_separators.num AS bloodseptube,
       blood_cpts.num AS bloodcpt,
       blood_trucultures.num AS bloodtruculture,
       blood_smears.num AS bloodsmear,
       tc_bloods.num AS tcblood,
       hair_unspecs.num AS hairunspec,
       hair_lengths.num AS hairlength,
       hair_cu_zns.num AS haircu_zn,
       teeth_3mouths.num AS mouthphotos3,
       teeth_lmandmolds.num AS lmandmold,
       teeth_lmaxmolds.num AS lmaxillamold,
       teeth_lmol1mol2s.num AS lm1m2siliconemold,
       skin_punchs.num AS skinpunch,
       tc_skins.num AS tcskin,
       vag_swabs.num AS vaginalswab,
       cerv_swabs.num AS cervicalswab,
       fecal_formalin.num AS fecal_formalin,
       vaginal_ph.num AS vaginal_ph,
       palm_swab.num AS palm_swab,
       tongue_swab.num AS tongue_swab,
       tooth_plaque_swab.num AS tooth_plaque_swab,
       vagswab_microbiome.num AS vagswab_microbiome,
       glans_penis_swab.num AS glans_penis_swab,
       fecal_microbiome.num AS fecal_microbiome,
       nostrils_swab.num AS nostrils_swab,
       skin_behind_ear_swab.num AS skin_behind_ear_swab,
       skin_inside_elbow_swab.num AS skin_inside_elbow_swab
FROM dartings
JOIN members
    ON dartings.sname = members.sname
LEFT JOIN dart_samples blood_unspecs
    ON dartings.dartid = blood_unspecs.dartid
    AND blood_unspecs.ds_type = 1
LEFT JOIN dart_samples blood_paxgenes
    ON dartings.dartid = blood_paxgenes.dartid
    AND blood_paxgenes.ds_type = 2
LEFT JOIN dart_samples blood_purpletops
    ON dartings.dartid = blood_purpletops.dartid
    AND blood_purpletops.ds_type = 3
LEFT JOIN dart_samples blood_separators
    ON dartings.dartid = blood_separators.dartid
    AND blood_separators.ds_type = 4
LEFT JOIN dart_samples blood_cpts
    ON dartings.dartid = blood_cpts.dartid
    AND blood_cpts.ds_type = 5
LEFT JOIN dart_samples blood_trucultures
    ON dartings.dartid = blood_trucultures.dartid
    AND blood_trucultures.ds_type = 6
LEFT JOIN dart_samples blood_smears
    ON dartings.dartid = blood_smears.dartid
    AND blood_smears.ds_type = 7
LEFT JOIN dart_samples hair_unspecs
    ON dartings.dartid = hair_unspecs.dartid
```
3.10 The DEMOG_CENSUS and DEMOG_CENSUS_SORTED Views

SELECT census.cenid AS cenid
 , census.sname AS sname
 , census.date AS date
 , census.grp AS grp
 , census.status AS status
 , census.cen AS cen
 , demog.reference AS reference
 , demog.comment AS comment
FROM census, demog
WHERE census.cenid = demog.cenid;

Figure 36: Query Defining the DEMOG_CENSUS View

<table>
<thead>
<tr>
<th>DEMOG</th>
<th>CENSUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenid (Cenid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Reference (Reference)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Comment (Comment)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td></td>
<td>Status (Status)</td>
</tr>
<tr>
<td></td>
<td>Cen (Cen)</td>
</tr>
<tr>
<td>Placement of individual in a group</td>
<td>Demography note of placement</td>
</tr>
</tbody>
</table>

Figure 37: Entity Relationship Diagram of the DEMOG_CENSUS View
3.11 The DENT_CODES View

SELECT teethdartids.dartid AS dartid,
 rum3.rum3tstate AS rum3tstate,
 rum3.rum3tcondition AS rum3tcondition,
 rum2.rum2tstate AS rum2tstate,
 rum2.rum2tcondition AS rum2tcondition,
 rum1.rum1tstate AS rum1tstate,
 rum1.rum1tcondition AS rum1tcondition,
 rup2.rup2tstate AS rup2tstate,
 rup2.rup2tcondition AS rup2tcondition,
 rup1.rup1tstate AS rup1tstate,
 rup1.rup1tcondition AS rup1tcondition,
 ruc.ructstate AS ructstate,
 ruc.ructcondition AS ructcondition,
 rui2.rui2tstate AS rui2tstate,
 rui2.rui2tcondition AS rui2tcondition,
 rui1.rui1tstate AS rui1tstate,
 rui1.rui1tcondition AS rui1tcondition,
 rlctstate AS rlctstate,
 rlctcondition AS rlctcondition,
 lli1.lli1tstate AS lli1tstate,
 lli1.lli1tcondition AS lli1tcondition,
 llc.llctstate AS llctstate,
 llc.llctcondition AS llctcondition,
 llp2.llp2tstate AS llp2tstate,
 llp2.llp2tcondition AS llp2tcondition,
 llp1.llp1tstate AS llp1tstate,
 llp1.llp1tcondition AS llp1tcondition,
 lli2.lli2tstate AS lli2tstate,
 lli2.lli2tcondition AS lli2tcondition,
 llm1.llm1tstate AS llm1tstate,
 llm1.llm1tcondition AS llm1tcondition,
 llp1.llp1tstate AS llp1tstate,
 llp1.llp1tcondition AS llp1tcondition,
 llm2.llm2tstate AS llm2tstate,
 llm2.llm2tcondition AS llm2tcondition,
 llm1.llm1tstate AS llm1tstate,
 llm1.llm1tcondition AS llm1tcondition,
 llp2.llp2tstate AS llp2tstate,
 llp2.llp2tcondition AS llp2tcondition,
 llp1.llp1tstate AS llp1tstate,
 llp1.llp1tcondition AS llp1tcondition,
 llm3.llm3tstate AS llm3tstate,
 llm3.llm3tcondition AS llm3tcondition,
 llm2.llm2tstate AS llm2tstate,
 llm2.llm2tcondition AS llm2tcondition,
 llm1.llm1tstate AS llm1tstate,
 llm1.llm1tcondition AS llm1tcondition,
 lum3.lum3tstate AS lum3tstate,
 lum3.lum3tcondition AS lum3tcondition,
 lum2.lum2tstate AS lum2tstate,
 lum2.lum2tcondition AS lum2tcondition,
 rum2.rum2tstate AS rum2tstate,
 rum2.rum2tcondition AS rum2tcondition,
 rum1.rum1tstate AS rum1tstate,
 rum1.rum1tcondition AS rum1tcondition,
 rup2.rup2tstate AS rup2tstate,
 rup2.rup2tcondition AS rup2tcondition,
 rup1.rup1tstate AS rup1tstate,
 rup1.rup1tcondition AS rup1tcondition,
 ruc.ructstate AS ructstate,
 ruc.ructcondition AS ructcondition,
 rum3.rum3tstate AS rum3tstate,
 rum3.rum3tcondition AS rum3tcondition,
 rum2.rum2tstate AS rum2tstate,
 rum2.rum2tcondition AS rum2tcondition,
 rum1.rum1tstate AS rum1tstate,
 rum1.rum1tcondition AS rum1tcondition,
 rup2.rup2tstate AS rup2tstate,
 rup2.rup2tcondition AS rup2tcondition,
 rup1.rup1tstate AS rup1tstate,
 rup1.rup1tcondition AS rup1tcondition,
 rum3.rum3tstate AS rum3tstate,
 rum3.rum3tcondition AS rum3tcondition,
 rum2.rum2tstate AS rum2tstate,
 rum2.rum2tcondition AS rum2tcondition,
 rum1.rum1tstate AS rum1tstate,
 rum1.rum1tcondition AS rum1tcondition,
 rup2.rup2tstate AS rup2tstate,
 rup2.rup2tcondition AS rup2tcondition,
 rup1.rup1tstate AS rup1tstate,
 rup1.rup1tcondition AS rup1tcondition,
 rum3.rum3tstate AS rum3tstate,
 rum3.rum3tcondition AS rum3tcondition,
 rum2.rum2tstate AS rum2tstate,
 rum2.rum2tcondition AS rum2tcondition,
 rum1.rum1tstate AS rum1tstate,
 rum1.rum1tcondition AS rum1tcondition,
 rup2.rup2tstate AS rup2tstate,
 rup2.rup2tcondition AS rup2tcondition,
 rup1.rup1tstate AS rup1tstate,
 rup1.rup1tcondition AS rup1tcondition,
 rum3.rum3tstate AS rum3tstate,
 rum3.rum3tcondition AS rum3tcondition,
 rum2.rum2tstate AS rum2tstate,
 rum2.rum2tcondition AS rum2tcondition,
 rum1.rum1tstate AS rum1tstate,
 rum1.rum1tcondition AS rum1tcondition,
 rup2.rup2tstate AS rup2tstate,
 rup2.rup2tcondition AS rup2tcondition,
 rup1.rup1tstate AS rup1tstate,
 rup1.rup1tcondition AS rup1tcondition,
Figure 39: Entity Relationship Diagram of the DENT_CODES View
3.12 The DENT_SITES View

```sql
SELECT teeth.dartid AS s7dartid,
    s1.sltstate AS s1ltstate,
    s1.sltcondition AS s1ltcondition,
    s1.s1deciduous AS s1deciduous,
    s2.s2tstate AS s2tstate,
    s2.s2tcondition AS s2tcondition,
    s2.s2deciduous AS s2deciduous,
    s3.s3tstate AS s3tstate,
    s3.s3tcondition AS s3tcondition,
    s3.s3deciduous AS s3deciduous,
    s4.s4tstate AS s4tstate,
    s4.s4tcondition AS s4tcondition,
    s4.s4deciduous AS s4deciduous,
    s5.s5tstate AS s5tstate,
    s5.s5tcondition AS s5tcondition,
    s5.s5deciduous AS s5deciduous,
    s6.s6tstate AS s6tstate,
    s6.s6tcondition AS s6tcondition,
    s6.s6deciduous AS s6deciduous,
    s7.s7tstate AS s7tstate,
    s7.s7tcondition AS s7tcondition,
    s7.s7deciduous AS s7deciduous,
    s8.s8tstate AS s8tstate,
    s8.s8tcondition AS s8tcondition,
    s8.s8deciduous AS s8deciduous,
    s9.s9tstate AS s9tstate,
    s9.s9tcondition AS s9tcondition,
    s9.s9deciduous AS s9deciduous,
    s10.s10tstate AS s10tstate,
    s10.s10tcondition AS s10tcondition,
    s10.s10deciduous AS s10deciduous,
    s11.s11tstate AS s11tstate,
    s11.s11tcondition AS s11tcondition,
    s11.s11deciduous AS s11deciduous,
    s12.s12tstate AS s12tstate,
    s12.s12tcondition AS s12tcondition,
    s12.s12deciduous AS s12deciduous,
    s13.s13tstate AS s13tstate,
    s13.s13tcondition AS s13tcondition,
    s13.s13deciduous AS s13deciduous,
    s14.s14tstate AS s14tstate,
    s14.s14tcondition AS s14tcondition,
    s14.s14deciduous AS s14deciduous,
    s15.s15tstate AS s15tstate,
    s15.s15tcondition AS s15tcondition,
    s15.s15deciduous AS s15deciduous,
    s16.s16tstate AS s16tstate,
    s16.s16tcondition AS s16tcondition,
    s16.s16deciduous AS s16deciduous,
    s17.s17tstate AS s17tstate,
    s17.s17tcondition AS s17tcondition,
    s17.s17deciduous AS s17deciduous,
    s18.s18tstate AS s18tstate,
    s18.s18tcondition AS s18tcondition,
    s18.s18deciduous AS s18deciduous,
    s19.s19tstate AS s19tstate,
    s19.s19tcondition AS s19tcondition,
    s19.s19deciduous AS s19deciduous,
    s20.s20tstate AS s20tstate,
    s20.s20tcondition AS s20tcondition,
    s20.s20deciduous AS s20deciduous,
    s21.s21tstate AS s21tstate,
    s21.s21tcondition AS s21tcondition,
    s21.s21deciduous AS s21deciduous,
    s22.s22tstate AS s22tstate,
    s22.s22tcondition AS s22tcondition,
    s22.s22deciduous AS s22deciduous,
    s23.s23tstate AS s23tstate,
    s23.s23tcondition AS s23tcondition,
    s23.s23deciduous AS s23deciduous,
    s24.s24tstate AS s24tstate,
    s24.s24tcondition AS s24tcondition,
    s24.s24deciduous AS s24deciduous,
    s25.s25tstate AS s25tstate,
    s25.s25tcondition AS s25tcondition,
    s25.s25deciduous AS s25deciduous,
    s26.s26tstate AS s26tstate,
    s26.s26tcondition AS s26tcondition,
    s26.s26deciduous AS s26deciduous,
    s27.s27tstate AS s27tstate,
    s27.s27tcondition AS s27tcondition,
    s27.s27deciduous AS s27deciduous,
    s28.s28tstate AS s28tstate,
    s28.s28tcondition AS s28tcondition,
    s28.s28deciduous AS s28deciduous,
    s29.s29tstate AS s29tstate,
    s29.s29tcondition AS s29tcondition,
    s29.s29deciduous AS s29deciduous,
    s30.s30tstate AS s30tstate,
    s30.s30tcondition AS s30tcondition,
    s30.s30deciduous AS s30deciduous,
    s31.s31tstate AS s31tstate,
    s31.s31tcondition AS s31tcondition,
    s31.s31deciduous AS s31deciduous,
    s32.s32tstate AS s32tstate,
    s32.s32tcondition AS s32tcondition,
    s32.s32deciduous AS s32deciduous
FROM toothcodes, teeth
WHERE toothcodes.toothsite = '32'
    AND teeth.tooth = toothcodes.tooth
```
The Babase Pocket Reference Guide

Figure 41: Entity Relationship Diagram of the DENT_SITES View

- The Tstate value of the TEETH row having the correct Dartid and a related Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

- The Tcondition value of the TEETH row having the correct Dartid and a related Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

The Deciduous value of the TOOTHCODES row related to the TEETH row having the correct Dartid and a Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

+ These columns repeat; there is a set of these columns for every distinct TOOTHCODES, Toothsite value. The “TS” shown here in each column name is replaced in the actual column name with the letter “s” followed by a TOOTHCODE, Toothsite value.
3.13 The INTERACT and INTERACT_SORTED Views

```sql
SELECT iid AS iid,
     interact_data.sid AS sid,
     interact_data.act AS act,
     acts.class AS class,
     interact_data.date AS date,
     julian(interact_data.date) AS jdate,
     interact_data.start AS start,
     spm(interact_data.start) AS startspm,
     stop AS stop,
     spm(interact_data.stop) AS stopspm,
     interact_data.observer AS observer,
     interact_data.handwritten AS handwritten
FROM interact_data
JOIN acts
  ON (acts.act = interact_data.act);
```

Figure 42: Query Defining the INTERACT View

<table>
<thead>
<tr>
<th>INTERACT_DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>lid (lid)</td>
</tr>
<tr>
<td>Sid (Sid)</td>
</tr>
<tr>
<td>Act (Act)</td>
</tr>
<tr>
<td>Date (Date)</td>
</tr>
<tr>
<td>(Jdate)</td>
</tr>
<tr>
<td>Start (Start)</td>
</tr>
<tr>
<td>(Startspm)</td>
</tr>
<tr>
<td>Stop (Stop)</td>
</tr>
<tr>
<td>(Stopspm)</td>
</tr>
<tr>
<td>Observer *</td>
</tr>
<tr>
<td>Handwritten</td>
</tr>
</tbody>
</table>

Figure 43: Entity Relationship Diagram of the INTERACT View
3.14 The MATERNITIES View

SELECT cycles.sname AS mom,
 cycles.cid AS cid,
 cycles.seq AS seq,
 cycles.series AS series,
 cycpoints.cpid AS conceive,
 cycpoints.date AS zdate,
 members.grp AS zdate_grp,
 cycpoints.edate AS edate,
 cycpoints.1date AS ldate,
 cycpoints.source AS source,
 pregs.pid AS pid,
 pregs.parity AS parity,
 biograph.bioid AS child_bioid,
 biograph.sname AS child,
 biograph.birth AS birth
FROM cycles
 JOIN cycpoints ON (cycpoints.cid = cycles.cid)
 JOIN members ON (members.date = cycpoints.date
 AND members.sname = cycles.sname)
 JOIN pregs ON (pregs.conceive = cycpoints.cpid)
 JOIN biograph ON (pregs.pid = biograph.pid);

Figure 44: Query Defining the MATERNITIES View
Figure 45: Entity Relationship Diagram of the MATERNITIES View

+ Although a join on this column alone returns multiple rows, because there is another join on a different column only 1 row matches all the criteria. (The combination of Sname and Date is unique.)
3.15 The MIN_MAXS View

SELECT wreadings.wrid AS wrid,
 , wreadings.wstation AS wstation
 , wreadings.wrdaytime AS wrdaytime
 , wreadings.estdaytime AS estdaytime
 , wreadings.wrperson AS wrperson
 , wreadings.wrnotes AS wrnotes
 , tempmins.tempmin AS tempmin
 , tempmaxs.tempmax AS tempmax
 , raingauges.rgspan AS rgspan
 , raingauges.estrgspan AS estrgspan
 , raingauges.rain AS rain
FROM wreadings
 LEFT OUTER JOIN tempmins
 ON wreadings.wrid = tempmins.wrid
 LEFT OUTER JOIN tempmaxs
 ON wreadings.wrid = tempmaxs.wrid
 LEFT OUTER JOIN raingauges
 ON wreadings.wrid = raingauges.wrid;

Figure 46: Query Defining the MIN_MAXS View
Figure 47: Entity Relationship Diagram of the MIN_MAXS View
3.16 The MIN_MAXS_SORTED View

```
SELECT wreadings.wrid AS wrid,
    wreadings.wstation AS wstation,
    wreadings.wrdaytime AS wrdaytime,
    wreadings.estdaytime AS estdaytime,
    wreadings.wrperson AS wrperson,
    wreadings.wrnotes AS wrnotes,
    tempmins.tempmin AS tempmin,
    tempmaxs.tempmax AS tempmax,
    raingauges.rgspan AS rgspan,
    raingauges.estrgspan AS estrgspan,
    raingauges.rain AS rain
FROM wreadings
    LEFT OUTER JOIN tempmins
        ON wreadings.wrid = tempmins.wrid
    LEFT OUTER JOIN tempmaxs
        ON wreadings.wrid = tempmaxs.wrid
    LEFT OUTER JOIN raingauges
        ON wreadings.wrid = raingauges.wrid
ORDER BY wreadings.wrdaytime, wreadings.wstation;;
```

Figure 48: Query Defining the MIN_MAXS_SORTED View
Figure 49: Entity Relationship Diagram of the MIN_MAXS_SORTED View
3.17 The MPI_EVENTS View

```sql
SELECT mpis.mpiid AS mpiid,
       mpis.date AS date,
       mpis.context_type AS context_type,
       mpis.context AS context,
       mpi_data.mpidid AS mpidid,
       mpi_data.seq AS seq,
       mpi_data.mpiact AS mpiact,
       actor.mpipid AS actorid,
       actor.sname AS actor,
       actor.unksname AS unkactor,
       actee.mpipid AS acteeid,
       actee.sname AS actee,
       actee.unksname AS unkactee,
       CASE WHEN EXISTS(SELECT 1
                  FROM mpiacts
                 WHERE mpiacts.mpiact = mpi_data.mpiact
                      AND mpiacts.kind = 'H')
           THEN
            EXISTS(SELECT 1
                       FROM mpi_data AS request,
                               mpiacts,
                               mpi_parts AS requestor,
                               mpi_parts AS requestee
                  WHERE request.mpiid = mpi_data.mpiid
                       AND request.seq < mpi_data.seq
                       AND mpiacts.mpiact = request.mpiact
                       AND mpiacts.kind = 'R'
                       AND requestor.mpidid = request.mpidid
                       AND requestor.role = 'R'
                       AND requestor.sname = actee.sname
                       AND requestee.mpidid = request.mpidid
                       AND requestee.role = 'E'
                       AND requestee.sname = actor.sname)
           ELSE
            NULL
           END AS solicited,
       EXISTS(SELECT 1
                  FROM mpi_data AS initial,
                               mpiacts
                 WHERE initial.mpiid = mpi_data.mpiid
                       AND initial.seq = 1
                       AND mpiacts.mpiact = initial.mpiact
                       AND mpiacts.decided)
              AS decided,
       mpi_data.helped AS helped,
       mpi_data.active AS active
FROM mpis
LEFT OUTER JOIN mpi_data ON (mpis.mpiid = mpi_data.mpiid)
LEFT OUTER JOIN mpi_parts AS actor
    ON (actor.mpipid = mpi_data.mpipid AND actor.role = 'R')
LEFT OUTER JOIN mpi_parts AS actee
    ON (actee.mpipid = mpi_data.mpipid AND actee.role = 'E');
```

Figure 50: Query Defining the MPI_EVENTS View
Figure 51: Entity Relationship Diagram of the MPI_EVENTS View
3.18 The MTD_CYCLES View

SELECT cycles.cid AS cid
 , cycles.sname AS sname
 , cycles.seq AS seq
 , cycles.series AS series
 , mcp.cpid AS mcpid
 , mcp.date AS mdate
 , mcp.edate AS emdate
 , mcp.ldate AS lmdate
 , mcp.source AS msource
 , tcp.cpid AS tcpid
 , tcp.date AS tdate
 , tcp.edate AS etdate
 , tcp.ldate AS ltdate
 , tcp.source AS tsource
 , dcp.cpid AS dcpid
 , dcp.date AS ddate
 , dcp.edate AS eddate
 , dcp.ldate AS lddate
 , dcp.source AS dsource
FROM cycles
 LEFT OUTER JOIN cycpoints AS mcp ON (mcp.cid = cycles.cid
 AND mcp.code = 'M')
 LEFT OUTER JOIN cycpoints AS tcp ON (tcp.cid = cycles.cid
 AND tcp.code = 'T')
 LEFT OUTER JOIN cycpoints AS dcp ON (dcp.cid = cycles.cid
 AND dcp.code = 'D')
ORDER BY cycles.sname, cycles.seq;

Figure 52: Query Defining the MTD_CYCLES View
Figure 53: Entity Relationship Diagram of the MTD_CYCLES View
3.19 The PARENTS View

SELECT biograph.sname AS kid
, maternities.mom AS mom
, dad_data.dad_consensus AS dad
, maternities.zdate AS zdate
, dad_data.dadid AS dadid
, maternities.zdate_grp AS momgrp
, members.grp AS dadgrp
FROM biograph
LEFT OUTER JOIN maternities
 ON (maternities.child = biograph.sname)
LEFT OUTER JOIN dad_data
 ON (dad_data.kid = biograph.sname)
LEFT OUTER JOIN members
 ON (members.sname = dad_data.dad_consensus
 AND members.date = maternities.zdate)
WHERE maternities.mom IS NOT NULL
OR dad_data.dad_consensus IS NOT NULL;

Figure 54: Query Defining the PARENTS View
3.20 The PCSKINS_SORTED View

SELECT pcskins.pcsid AS pcsid, pcskins.sname AS sname, pcskins.date AS date, pcskins.color AS color
FROM pcskins
ORDER BY sname, date;

Figure 56: Query Defining the PCSKINS_SORTED View
The PCV_STATS View

```sql
SELECT pcvs.dartid AS dartid,
    count(*) AS pcvsamps,
    avg(pcvs.pcv) AS pcv_mean,
    stddev(pcvs.pcv) AS pcv_stddev
FROM pcvs
GROUP BY pcvs.dartid;
```

![Figure 58: Query Defining the PCV_STATS View](image)

Figure 58: Query Defining the PCV_STATS View

![Figure 59: Entity Relationship Diagram of the PCV_STATS View](image)

Figure 59: Entity Relationship Diagram of the PCV_STATS View
3.22 The POINTS and POINTS_SORTED Views

```sql
SELECT pntid AS pntid,
       sid AS sid,
       activity AS activity,
       posture AS posture,
       foodcode AS foodcode,
       ptime AS ptime,
       spm(ptime) AS ptimespm
FROM point_data;
```

Figure 60: Query Defining the POINTS View

POINT_DATA

<table>
<thead>
<tr>
<th>Pntid (Pntid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sid (Sid)</td>
</tr>
<tr>
<td>Activity * (Activity)</td>
</tr>
<tr>
<td>Posture * (Posture)</td>
</tr>
<tr>
<td>Foodcode * (Foodcode)</td>
</tr>
<tr>
<td>Ptime (Ptime)</td>
</tr>
<tr>
<td>(Ptimespm)</td>
</tr>
</tbody>
</table>

Figure 61: Entity Relationship Diagram of the POINTS View
3.23 The POTENTIAL_DADS View

```sql
SELECT maternities.child_bioid AS bioid
, maternities.child AS kid
, maternities.mom AS mom
, maternities.zdate AS zdate
, maternities.zdate_grp AS grp
, pdads.sname AS pdad
, CASE
    WHEN rankdates.ranked <= maternities.zdate
    THEN 'A'
    WHEN maturedates.matured <= maternities.zdate
    THEN 'S'
    ELSE 'O'
END AS status
, maternities.zdate - pdads.birth AS pdad_age_days
, trunc((maternities.zdate - pdads.birth) / 365.25, 1) AS pdad_age_years
, (SELECT count(*)
FROM members as dadmembers
JOIN members AS mommembers
ON (mommembers.date = dadmembers.date
    AND supergroup(mommembers.grp, mommembers.date)
    = supergroup(dadmembers.grp, dadmembers.date))
WHERE dadmembers.sname = pdads.sname
AND dadmembers.date < maternities.zdate
AND dadmembers.date >= maternities.zdate - 5
AND mommembers.sname = maternities.mom
AND mommembers.date < maternities.zdate
AND mommembers.date >= maternities.zdate - 5)
AS estrous_presence
, (SELECT count(*)
FROM actor_actees
WHERE actor_actees.date < maternities.zdate
AND actor_actees.date >= maternities.zdate - 5
AND (actor_actees.act = 'M'
    OR actor_actees.act = 'E')
AND actor_actees.actor = pdads.sname
AND actor_actees.actee = maternities.mom)
AS estrous_me
, (SELECT count(*)
FROM actor_actees
WHERE actor_actees.date < maternities.zdate
AND actor_actees.date >= maternities.zdate - 5
AND actor_actees.act = 'C'
AND actor_actees.actor = pdads.sname
AND actor_actees.actee = maternities.mom)
AS estrous_c
FROM maternities
JOIN biograph AS pdads
ON (pdads.sname
    IN (SELECT dadmembers.sname
        FROM members AS dadmembers
        JOIN members AS mommembers
        ON (mommembers.date = dadmembers.date
            AND supergroup(mommembers.grp, mommembers.date)
            = supergroup(dadmembers.grp, dadmembers.date))
WHERE dadmembers.sname = pdads.sname
AND dadmembers.date < maternities.zdate
AND dadmembers.date >= maternities.zdate - 5
AND mommembers.sname = maternities.mom
AND mommembers.date < maternities.zdate
AND mommembers.date >= maternities.zdate - 5))
LEFT OUTER JOIN rankdates
ON (rankdates.sname = pdads.sname)
LEFT OUTER JOIN maturedates
ON (maturedates.sname = pdads.sname)
WHERE pdads.sex = 'M'
-- Speed things up by eliminating potential dads
-- who could not possibly interpolate into the mom's group
-- during the fertile period.
AND pdads.statdate >= maternities.zdate - 5 - 14
-- Potential dad must be at least 2192 days old
-- (approximately 6 years) on the zdate.
AND maternities.zdate - pdads.birth >= 2192;
```

Figure 63: Entity Relationship Diagram of the foundation of the POTENTIAL_DADS View

* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.
Figure 64: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View which places the mother and potential father in the same group during the fertile period.
Figure 65: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View having easily computed columns

* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.
Figure 66: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View involving social interactions

** This subquery on ACTOR ACTEES is repeated twice in the view, once to compute (Estrous_me) and once to compute (Estrous_c).

* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.
3.24 The PROPORTIONAL_RANKS View

```sql
WITH num_indivs AS (
    SELECT ranks.rnkdate,
           ranks.grp,
           ranks.rnktype,
           count(*) AS num_members
    FROM ranks
    GROUP BY ranks.rnkdate, ranks.grp, ranks.rnktype)

SELECT ranks.rnkid AS rnkid,
       ranks.sname AS sname,
       ranks.rnkdate AS rnkdate,
       ranks.grp AS grp,
       ranks.rnktype AS rnktype,
       ranks.rank AS ordrank,
       CASE
           WHEN num_indivs.num_members = 1 THEN 1::numeric
           ELSE 1 - ((ranks.rank - 1)::numeric / (num_indivs.num_members - 1):: numeric)
       END::numeric(5,4) AS proprank
FROM ranks
JOIN num_indivs
ON (num_indivs.rnkdate = ranks.rnkdate
AND num_indivs.grp = ranks.grp
AND num_indivs.rnktype = ranks.rnktype);
```

Figure 67: Query Defining the PROPORTIONAL_RANKS View

Figure 68: Entity Relationship Diagram of the PROPORTIONAL_RANKS View

* NUM_INDIVS is a subquery from RANKS, in which the number of RANKS rows (grouped by Rnkdate, Grp, and Rnktype) is counted. It does not appear anywhere as an independent entity.

1, if Num_Members = 1. Otherwise, 1-((Rank - 1)/(Num_Members - 1))
3.25 The QUADS View

SELECT quad_data.quad AS quad,
 ST_X(quad_data.xyloc) AS x,
 ST_Y(quad_data.xyloc) AS y,
 quad_data.aerial AS aerial
FROM quad_data;

Figure 69: Query Defining the QUADS View

3.26 The SEXSKINS_CYCLES and SEXSKINS_CYCLES_SORTED Views

SELECT cycles.cid AS cid,
 cycles.sname AS sname,
 cycles.seq AS seq,
 cycles.series AS series,
 sexskins.sxid AS sxid,
 sexskins.date AS date,
 sexskins.size AS size
FROM sexskins, cycles
WHERE cycles.cid = sexskins.cid
ORDER BY cycles.sname, sexskins.date;

Figure 71: Query Defining the SEXSKINS_CYCLES View
Figure 72: Entity Relationship Diagram of the SEXSKINS_CYCLES View
3.27 The SWERB view

```sql
SELECT swerb_data.swid AS swid,
       swerb_departs_data.did AS did,
       swerb_data.time AS time,
       swerb_bes.beid AS beid,
       swerb_bes.focal_grp AS focal_grp,
       swerb_bes.seq AS seq,
       swerb_data.event AS event,
       swerb_data.seen_grp AS seen_grp,
       swerb_data.lone_animal AS lone_animal,
       swerb_data.quad AS quad,
       CASE
         WHEN swerb_data.xyloc IS NULL
           THEN 'quad'
         ELSE 'gps'
       END AS merged_is,
       COALESCE(ST_X(swerb_data.xyloc), ST_X(quad_data.xyloc)) AS x,
       COALESCE(ST_Y(swerb_data.xyloc), ST_Y(quad_data.xyloc)) AS y,
       swerb_data.altitude AS altitude,
       swerb_data.pdop AS pdop,
       swerb_data.accuracy AS accuracy,
       swerb_data.subgroup AS subgroup,
       swerb_data.ogdistance AS ogdistance,
       swerb_data.garmincode AS garmincode,
       swerb_loc_data.loc AS loc,
       swerb_loc_data.adcode AS adcode,
       adcodes.adn AS adn,
       swerb_loc_data.loc_status AS loc_status,
       swerb_loc_data.adtime AS adtime,
       ST_X(swerb_loc_gps.xyloc) AS second_x,
       ST_Y(swerb_loc_gps.xyloc) AS second_y,
       swerb_loc_gps.altitude AS second_altitude,
       swerb_loc_gps.pdop AS second_pdop,
       swerb_loc_gps.accuracy AS second_accuracy,
       swerb_loc_gps.gps_datetime AS second_gps_datetime,
       swerb_loc_gps.garmincode AS second_garmincode
FROM swerb_data
  LEFT OUTER JOIN quad_data
    ON (quad_data.quad = swerb_data.quad)
  JOIN swerb_bes
    ON (swerb_bes.beid = swerb_data.beid)
  JOIN swerb_departs_data
    ON (swerb_departs_data.did = swerb_bes.did)
  LEFT OUTER JOIN swerb_departs_gps
    ON (swerb_departs_gps.did = swerb_bes.did)
  LEFT OUTER JOIN swerb_loc_data
    ON (swerb_loc_data.swid = swerb_data.swid)
  LEFT OUTER JOIN adcodes ON (adcodes.adcode = swerb_loc_data.adcode)
  LEFT OUTER JOIN swerb_loc_gps
    ON (swerb_loc_gps.swid = swerb_loc_data.swid);
```

Figure 73: Query Defining the SWERB View
Figure 74: Entity Relationship Diagram of the SWERB View
3.28 The SWERB_DEPARTS view

SELECT swerb_departs_data.did AS did, swerb_departs_data.date AS date, swerb_departs_data.time AS time, ST_X(swerb_departs_gps.xyloc) AS x, ST_Y(swerb_departs_gps.xyloc) AS y, swerb_departs_gps.altitude AS altitude, swerb_departs_gps.pdop AS pdop, swerb_departs_gps.accuracy AS accuracy, swerb_departs_gps.gps AS gps, swerb_departs_gps.garmincode AS garmincode
FROM swerb_departs_data
LEFT OUTER JOIN swerb_departs_gps
ON (swerb_departs_gps.did = swerb_departs_data.did);

Figure 75: Query Defining the SWERB_DEPARTS View

<table>
<thead>
<tr>
<th>SWERB_DEPARTS_DATA</th>
<th>Departure</th>
<th>SWERB_DEPARTS_GPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did (Did)</td>
<td>GPS info</td>
<td>Did (Did)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
<td>(X)</td>
</tr>
<tr>
<td>Time (Time)</td>
<td></td>
<td>(Y)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Altitude (Altitude)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PDOP (PDOP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accuracy (Accuracy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GPS * (GPS)</td>
</tr>
</tbody>
</table>

Figure 76: Entity Relationship Diagram of the SWERB_DEPARTS View

3.29 The SWERB_LOC_GPS_XY view

SELECT swerb_loc_gps.swid AS swid, ST_X(swerb_loc_gps.xyloc) AS x, ST_Y(swerb_loc_gps.xyloc) AS y, swerb_loc_gps.altitude AS altitude, swerb_loc_gps.pdop AS pdop, swerb_loc_gps.accuracy AS accuracy, swerb_loc_gps.gps_datetime AS gps_datetime, swerb_loc_gps.garmincode AS garmincode
FROM swerb_loc_gps;

Figure 77: Query Defining the SWERB_LOC_GPS_XY View
3.30 The SWERB_LOCS view

```sql
SELECT swerb_loc_data.swid AS swid,
      swerb_loc_data.loc AS loc,
      swerb_loc_data.adcode AS adcode,
      adcodes.adn AS adn,
      swerb_loc_data.loc_status AS loc_status,
      swerb_loc_data.adtime AS time
FROM swerb_loc_data
JOIN adcodes ON (adcodes.adcode = swerb_loc_data.adcode);
```

Figure 80: Entity Relationship Diagram of the SWERB_LOCS View
3.31 The SWERB_UPLOAD view

```sql
SELECT NULL::TEXT AS header,
       NULL::TEXT AS name,
       NULL::TEXT AS description,
       NULL::TEXT AS type,
       NULL::TEXT AS position,
       NULL::TEXT AS altitude,
       NULL::TEXT AS depth,
       NULL::TEXT AS proximity,
       NULL::TEXT AS display_mode,
       NULL::TEXT AS color,
       NULL::TEXT AS symbol,
       NULL::TEXT AS facility,
       NULL::TEXT AS city,
       NULL::TEXT AS state,
       NULL::TEXT AS country,
       NULL::TEXT AS pdop,
       NULL::TEXT AS accuracy,
       NULL::TEXT AS quad,
       NULL::TEXT AS date,
       NULL::TEXT AS timeest,
       NULL::TEXT AS source,
       NULL::TEXT AS lone_animal,
       NULL::BOOLEAN AS is_effort,
       NULL::BOOLEAN AS secondary_ad,
       NULL::TEXT AS notes
WHERE _raise_babase_exception(
    'Cannot select SWERB_UPLOAD'
    || ': The only use of the SWERB_UPLOAD view is to insert'
    || ' new data into the SWERB portion of babase');
```

Figure 81: Query Defining the SWERB_UPLOAD View

The SWERB_UPLOAD view is used only to insert data into the SWERB portion of Babase. Since it cannot be queried and the semantics of the uploaded file varies by line it has no ER diagram.

Figure 82: Entity Relationship Diagram of the SWERB_UPLOAD View

3.32 The ULNA_STATS View

```sql
SELECT ulnas.dartid AS dartid,
       count(*) AS ulsamps,
       avg(ulnas.ullength) AS ullength_mean,
       stddev(ulnas.ullength) AS ullength_stddev,
       avg(ulnas.ulunadjusted) AS ulunadjusted_mean,
       stddev(ulnas.ulunadjusted) AS ulunadjusted_stddev
FROM ulnas
GROUP BY ulnas.dartid;
```

Figure 83: Query Defining the ULNA_STATS View
Figure 84: Entity Relationship Diagram of the ULNA_STATS View
3.33 The TESTES_ARC_STATS View

```sql
SELECT testesdartids.dartid AS dartid
 , testeslenhgt.testlengthsamps AS testlengthsamps
 , testeslenhgt.testlength_mean AS testlength_mean
 , testeslenhgt.testlength_stddev AS testlength_stddev
 , testeslwidth.testlwidthsamps AS testlwidthsamps
 , testeslwidth.testlwidth_mean AS testlwidth_mean
 , testeslwidth.testlwidth_stddev AS testlwidth_stddev
 , testesrlength.testrlengthsamps AS testrlengthsamps
 , testesrlength.testrlength_mean AS testrlength_mean
 , testesrlength.testrlength_stddev AS testrlength_stddev
 , testesrwidth.testrwidthsamps AS testrwidthsamps
 , testesrwidth.testrwidth_mean AS testrwidth_mean
 , testesrwidth.testrwidth_stddev AS testrwidth_stddev
FROM (SELECT testes_arc.dartid
 FROM testes_arc
 GROUP BY testes_arc.dartid)
 AS testesdartids
LEFT OUTER JOIN
 (SELECT testes_arc.dartid AS llengthdartid
 , count(*) AS testlengthsamps
 , avg(testes_arc.testlength) AS testlength_mean
 , stddev(testes_arc.testlength) AS testlength_stddev
 FROM testes_arc
 WHERE testes_arc.testside = 'L'
 AND testes_arc.testlength IS NOT NULL
 GROUP BY testes_arc.dartid)
 AS testesllength
 ON testesllength.llengthdartid = testesdartids.dartid
LEFT OUTER JOIN
 (SELECT testes_arc.dartid AS lwidthdartid
 , count(*) AS testlwidthsamps
 , avg(testes_arc.testwidth) AS testlwidth_mean
 , stddev(testes_arc.testwidth) AS testlwidth_stddev
 FROM testes_arc
 WHERE testes_arc.testside = 'L'
 AND testes_arc.testwidth IS NOT NULL
 GROUP BY testes_arc.dartid)
 AS testeslwidth
 ON testeslwidth.lwidthdartid = testesdartids.dartid
LEFT OUTER JOIN
 (SELECT testes_arc.dartid AS rlengthdartid
 , count(*) AS testrlengthsamps
 , avg(testes_arc.testlength) AS testrlength_mean
 , stddev(testes_arc.testlength) AS testrlength_stddev
 FROM testes_arc
 WHERE testes_arc.testside = 'R'
 AND testes_arc.testlength IS NOT NULL
 GROUP BY testes_arc.dartid)
 AS testesrlength
 ON testesrlength.rlengthdartid = testesdartids.dartid
LEFT OUTER JOIN
 (SELECT testes_arc.dartid AS rwidthdartid
 , count(*) AS testrwidthsamps
 , avg(testes_arc.testwidth) AS testrwidth_mean
 , stddev(testes_arc.testwidth) AS testrwidth_stddev
 FROM testes_arc
 WHERE testes_arc.testside = 'R'
 AND testes_arc.testwidth IS NOT NULL
 GROUP BY testes_arc.dartid)
 AS testesrwidth
 ON testesrwidth.rwidthdartid = testesdartids.dartid;
```

Figure 85: Query Defining the TESTES_ARC_STATS View
Figure 86: Entity Relationship Diagram of the TESTES_ARC_STATS View
3.34 The TESTES_DIAM_STATS View

```sql
SELECT testesdartids.dartid AS dartid,
    testeslength.testllengthsamps AS testllengthsamps,
    testeslength.testllength_mean AS testllength_mean,
    testeslength.testllength_stddev AS testllength_stddev,
    testeswidth.testlwidthsamps AS testlwidthsamps,
    testeswidth.testlwidth_mean AS testlwidth_mean,
    testeswidth.testlwidth_stddev AS testlwidth_stddev,
    testesrlength.testrlengthsamps AS testrlengthsamps,
    testesrlength.testrlength_mean AS testrlength_mean,
    testesrlength.testrlength_stddev AS testrlength_stddev,
    testesrwidth.testrwidthsamps AS testrwidthsamps,
    testesrwidth.testrwidth_mean AS testrwidth_mean,
    testesrwidth.testrwidth_stddev AS testrwidth_stddev
FROM (SELECT testes_diam.dartid
    FROM testes_diam
    GROUP BY testes_diam.dartid)
AS testesdartids
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS llengthdartid,
        count(*) AS testllengthsamps,
        avg(testes_diam.testlength) AS testllength_mean,
        stddev(testes_diam.testlength) AS testllength_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'L'
        AND testes_diam.testlength IS NOT NULL
    GROUP BY testes_diam.dartid)
AS testesllength
ON testesllength.llengthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS lwidthdartid,
        count(*) AS testlwidthsamps,
        avg(testes_diam.testwidth) AS testlwidth_mean,
        stddev(testes_diam.testwidth) AS testlwidth_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'L'
        AND testes_diam.testwidth IS NOT NULL
    GROUP BY testes_diam.dartid)
AS testeslwidth
ON testeslwidth.lwidthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS rlengthdartid,
        count(*) AS testrlengthsamps,
        avg(testes_diam.testlength) AS testrlength_mean,
        stddev(testes_diam.testlength) AS testrlength_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'R'
        AND testes_diam.testlength IS NOT NULL
    GROUP BY testes_diam.dartid)
AS testesrlength
ON testesrlength.rlengthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS rwidthdartid,
        count(*) AS testrwidthsamps,
        avg(testes_diam.testwidth) AS testrwidth_mean,
        stddev(testes_diam.testwidth) AS testrwidth_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'R'
        AND testes_diam.testwidth IS NOT NULL
    GROUP BY testes_diam.dartid)
AS testesrwidth
ON testesrwidth.rwidthdartid = testesdartids.dartid;
```

Figure 87: Query Defining the TESTES_DIAM_STATS View
Figure 88: Entity Relationship Diagram of the TESTES_DIAM_STATS View
3.35 The WPDETAILS_AFFECTEDPARTS View

```sql
SELECT wp_details.wpdid AS wpdid,
       wp_reports.wprid AS wprid,
       wp_reports.wid AS wid,
       wp_details.woundpathcode AS woundpathcode,
       wp_details.cluster AS cluster,
       wp_details.quantity AS quantity,
       wp_details.maxdimension AS maxdimension,
       wp_details.impairslocomotion AS impairslocomotion,
       wp_details.infectionsigns AS infectionsigns,
       wp_details.notes AS detailnotes,
       wp_affectedparts.wpaid AS wpaid,
       wp_affectedparts.bodypart AS bodypart,
       bodyparts.bodyside AS bodyside,
       bodyparts.innerouter AS innerouter,
       bodyparts.bodyregion AS bodyregion
FROM wp_reports
JOIN wp_details
    ON wp_details.wprid = wp_reports.wprid
JOIN wp_affectedparts
    ON wp_affectedparts.wpdid = wp_details.wpdid
JOIN bodyparts
    ON bodyparts.bpid = wp_affectedparts.bodypart;
```

Figure 89: Query Defining the WPDETAILS_AFFECTEDPARTS View

![Entity Relationship Diagram](image)

Figure 90: Entity Relationship Diagram of the WPDETAILS_AFFECTEDPARTS View
3.36 The WP_REPORTS_OBSERVERS View

WITH concat_observers AS (SELECT wprid, string_agg(observer, 'bb_obs_separator' ORDER BY wpoid) as observers FROM wp_observers GROUP BY wprid)
SELECT wp_reports.wprid AS wprid, wp_reports.wid AS wid, wp_reports.date AS date, wp_reports.time AS time, concat_observers.observers AS observers, wp_reports.sname AS sname, wp_reports.grp AS grp, wp_reports.observercomments AS observercomments, wp_reports.reportstate AS reportstate FROM wp_reports LEFT JOIN concat_observers ON concat_observers.wprid = wp_reports.wprid;

Figure 91: Query Defining the WP_REPORTS_OBSERVERS View

Figure 92: Entity Relationship Diagram of the WP_REPORTS_OBSERVERS View

4 Views Which Add Gid To Tables

In addition to the above views there are a number of views which produce the group of a referenced individual as of a pertinent date. These views are all named after the table from which they are derived, with the addition of the suffixed _GRP. They are nearly identical to the table from which they derive, differing only by the addition of a column named Grp.

The only operation allowed on these views is SELECT. INSERT, UPDATE, and DELETE are not allowed.
4.1 The BIRTH_GRP View

SELECT biograph.*,
 , members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
 AND members.date = CAST(biograph.birth AS DATE);

Figure 93: Query Defining the BIRTH_GRP View

<table>
<thead>
<tr>
<th>BIOGRAPH</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Birth (Birth)</td>
<td>Date (Birth)</td>
</tr>
<tr>
<td>Remainder of columns in BIOGRAPH...</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>

Figure 94: Entity Relationship Diagram of the BIRTH_GRP View

4.2 The ENTRYDATE_GRP View

SELECT biograph.*,
 , members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
 AND members.date = CAST(biograph.entrydate AS DATE);

Figure 95: Query Defining the ENTRYDATE_GRP View

<table>
<thead>
<tr>
<th>BIOGRAPH</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Entrydate (Entrydate)</td>
<td>Date (Entrydate)</td>
</tr>
<tr>
<td>Remainder of columns in BIOGRAPH...</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>

Figure 96: Entity Relationship Diagram of the ENTRYDATE_GRP View
4.3 The STATDATE_GRP View

SELECT biograph.*
 , members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
 AND members.date = CAST(biograph.statdate AS DATE);

Figure 97: Query Defining the STATDATE_GRP View

<table>
<thead>
<tr>
<th>BIOGRAPH</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Statdate (Statdate)</td>
<td>Date (Statdate)</td>
</tr>
<tr>
<td>Remainder of columns in BIOGRAPH</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>"..."</td>
<td></td>
</tr>
</tbody>
</table>

Figure 98: Entity Relationship Diagram of the STATDATE_GRP View

4.4 The CONSORTDATES_GRP View

SELECT consortdates.*
 , members.grp AS grp
FROM members, consortdates
WHERE members.sname = consortdates.sname
 AND members.date = CAST(consortdates.consorted AS DATE);

Figure 99: Query Defining the CONSORTDATES_GRP View

<table>
<thead>
<tr>
<th>CONSORTDATES</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Consorted (Consorted)</td>
<td>Date (Consorted)</td>
</tr>
<tr>
<td>Remainder of columns in CONSORTDATES</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>"..."</td>
<td></td>
</tr>
</tbody>
</table>

Figure 100: Entity Relationship Diagram of the CONSORTDATES_GRP View
4.5 The CYCGAPDAYS_GRP View

SELECT cycgapdays.*
 , members.grp AS grp
FROM members, cycgapdays
WHERE members.sname = cycgapdays.sname
 AND members.date = CAST(cycgapdays.date AS DATE);

Figure 101: Query Defining the CYCGAPDAYS_GRP View

<table>
<thead>
<tr>
<th>CYCGAPDAYS</th>
<th>Individual in question</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cendid (Cendid)</td>
<td></td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td></td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in CYCGAPDAYS....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 102: Entity Relationship Diagram of the CYCGAPDAYS_GRP View

4.6 The CYCGAPS_GRP View

SELECT cycgaps.*
 , members.grp AS grp
FROM members, cycgaps
WHERE members.sname = cycgaps.sname
 AND members.date = CAST(cycgaps.date AS DATE);

Figure 103: Query Defining the CYCGAPS_GRP View

<table>
<thead>
<tr>
<th>CYCGAPS</th>
<th>Individual in question</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gapid (Gapid)</td>
<td></td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td></td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in CYCGAPS....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 104: Entity Relationship Diagram of the CYCGAPS_GRP View
4.7 The CYCSTATS_GRP View

```sql
SELECT cycstats.*, members.grp AS grp
FROM members, cycstats
WHERE members.sname = cycstats.sname
    AND members.date = CAST(cycstats.date AS DATE);
```

Figure 105: Query Defining the CYCSTATS_GRP View

<table>
<thead>
<tr>
<th>CYCSTATS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSid (CSid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns</td>
<td></td>
</tr>
</tbody>
</table>
in CYCSTATS.... | |

Figure 106: Entity Relationship Diagram of the CYCSTATS_GRP View

4.8 The DARTINGS_GRP View

```sql
SELECT dartings.*, members.grp AS grp
FROM members, dartings
WHERE members.sname = dartings.sname
    AND members.date = CAST(dartings.date AS DATE);
```

Figure 107: Query Defining the DARTINGS_GRP View

<table>
<thead>
<tr>
<th>DARTINGS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dartid (Dartid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Dartdaytime)</td>
</tr>
<tr>
<td>Dartdaytime (Dartdaytime)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns</td>
<td></td>
</tr>
</tbody>
</table>
in DARTINGS.... | |

Figure 108: Entity Relationship Diagram of the DARTINGS_GRP View
4.9 The DISPERSEDATES_GRP View

SELECT dispersedates.*
 , members.grp AS grp
FROM members, dispersedates
WHERE members.sname = dispersedates.sname
 AND members.date = CAST(dispersedates.dispersed AS DATE);

Figure 109: Query Defining the DISPERSEDATES_GRP View

<table>
<thead>
<tr>
<th>DISPERSEDATES</th>
<th></th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Dispersed (Dispersed)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td></td>
<td>Remainder of columns in DISPERSEDATES....</td>
<td>Date (Dispersed)</td>
</tr>
</tbody>
</table>

Figure 110: Entity Relationship Diagram of the DISPERSEDATES_GRP View

4.10 The MATUREDATES_GRP View

SELECT maturedates.*
 , members.grp AS grp
FROM members, maturedates
WHERE members.sname = maturedates.sname
 AND members.date = CAST(maturedates.matured AS DATE);

Figure 111: Query Defining the MATUREDATES_GRP View

<table>
<thead>
<tr>
<th>MATUREDATES</th>
<th></th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Matured (Matured)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td></td>
<td>Remainder of columns in MATUREDATES....</td>
<td>Date (Matured)</td>
</tr>
</tbody>
</table>

Figure 112: Entity Relationship Diagram of the MATUREDATES_GRP View
4.11 The MDINTERVALS_GRP View

SELECT mdintervals.*
, members.grp AS grp
FROM members, mdintervals
WHERE members.sname = mdintervals.sname
AND members.date = CAST(mdintervals.date AS DATE);

Figure 113: Query Defining the MDINTERVALS_GRP View

Figure 114: Entity Relationship Diagram of the MDINTERVALS_GRP View

4.12 The MMINTERVALS_GRP View

SELECT mmintervals.*
, members.grp AS grp
FROM members, mmintervals
WHERE members.sname = mmintervals.sname
AND members.date = CAST(mmintervals.date AS DATE);

Figure 115: Query Defining the MMINTERVALS_GRP View

Figure 116: Entity Relationship Diagram of the MMINTERVALS_GRP View
4.13 The PCSKINS_GRP View

SELECT pcskins.*
 , members.grp AS grp
FROM members, pcskins
WHERE members.sname = pcskins.sname
 AND members.date = CAST(pcskins.date AS DATE);

Figure 117: Query Defining the PCSKINS_GRP View

Figure 118: Entity Relationship Diagram of the PCSKINS_GRP View

4.14 The RANKDATES_GRP View

SELECT rankdates.*
 , members.grp AS grp
FROM members, rankdates
WHERE members.sname = rankdates.sname
 AND members.date = CAST(rankdates.ranked AS DATE);

Figure 119: Query Defining the RANKDATES_GRP View

Figure 120: Entity Relationship Diagram of the RANKDATES_GRP View
4.15 The REPSTATS_GRP View

```sql
SELECT repstats.*, members.grp AS grp
FROM members, repstats
WHERE members.sname = repstats.sname
AND members.date = CAST(repstats.date AS DATE);
```

Figure 121: Query Defining the REPSTATS_GRP View

```
<table>
<thead>
<tr>
<th>REPSTATS</th>
<th>Individual in question</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rid (Rid)</td>
<td></td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td></td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in REPSTATS...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Figure 122: Entity Relationship Diagram of the REPSTATS_GRP View