The Babase Pocket Reference Guide

A Technical Specification Summary
This material is based upon work supported by the National Science Foundation under Grant Nos. 0323553 and 0323596.
COLLABORATORS

<table>
<thead>
<tr>
<th>ACTION</th>
<th>NAME</th>
<th>DATE</th>
<th>SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRITTEN BY</td>
<td>Karl O. Pinc, PhD. Jeanne Altmann, PhD. Susan C. Alberts, and Leah Gerber</td>
<td>November 7, 2019</td>
<td></td>
</tr>
<tr>
<td>ER Diagram layout and conversion to Dia</td>
<td>Leah Gerber</td>
<td>November 7, 2019</td>
<td></td>
</tr>
<tr>
<td>DocBook formatting</td>
<td>Anne Hubbard</td>
<td>November 7, 2019</td>
<td></td>
</tr>
<tr>
<td>DocBook formatting</td>
<td>Karl Pinc</td>
<td>November 7, 2019</td>
<td></td>
</tr>
</tbody>
</table>

REVISION HISTORY

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>DATE</th>
<th>DESCRIPTION</th>
<th>NAME</th>
</tr>
</thead>
</table>

Contents

1 Babase Summarized

2 The Babase ER Diagrams

3 The Babase Views
 3.1 The ACTOR_ACTEES View
 3.2 The ANESTH_STATS View
 3.3 The BODYTEMP_STATS View
 3.4 The CENSUS_DEMOG and CENSUS_DEMOG_SORTED Views
 3.5 The CHEST_STATS View
 3.6 The CROWNRUMP_STATS View
 3.7 The CYCLES_SESKINS and CYCLES_SESKINS_SORTED Views
 3.8 The CYCPOINTS_CYCLES and CYCPOINTS_CYCLES_SORTED Views
 3.9 The DSAMPLES View
 3.10 The DEMOG_CENSUS and DEMOG_CENSUS_SORTED Views
 3.11 The DENT_CODES View
 3.12 The DENT_SITES View
 3.13 The INTERACT and INTERACT_SORTED Views
 3.14 The MATERNITIES View
 3.15 The MIN_MAXS View
 3.16 The MIN_MAXS_SORTED View
 3.17 The MPI_EVENTS View
 3.18 The MTD_CYCLES View
 3.19 The PARENTS View
 3.20 The PCSKINS_SORTED View
 3.21 The PCV_STATS View
 3.22 The POINTS and POINTS_SORTED Views
 3.23 The POTENTIAL_DADS View
 3.24 The PROPORTIONAL_RANKS View
 3.25 The QUADS View
 3.26 The SEXSKINS_CYCLES and SEXSKINS_CYCLES_SORTED Views
 3.27 The SWERB view
 3.28 The SWERB_DEPARTS view
 3.29 The SWERB_LOC_GPS_XY view
 3.30 The SWERB_LOCS view
 3.31 The SWERB_UPLOAD view
 3.32 The ULNA_STATS View

1 Babase Summarized

2 The Babase ER Diagrams

3 The Babase Views
 3.1 The ACTOR_ACTEES View
 3.2 The ANESTH_STATS View
 3.3 The BODYTEMP_STATS View
 3.4 The CENSUS_DEMOG and CENSUS_DEMOG_SORTED Views
 3.5 The CHEST_STATS View
 3.6 The CROWNRUMP_STATS View
 3.7 The CYCLES_SESKINS and CYCLES_SESKINS_SORTED Views
 3.8 The CYCPOINTS_CYCLES and CYCPOINTS_CYCLES_SORTED Views
 3.9 The DSAMPLES View
 3.10 The DEMOG_CENSUS and DEMOG_CENSUS_SORTED Views
 3.11 The DENT_CODES View
 3.12 The DENT_SITES View
 3.13 The INTERACT and INTERACT_SORTED Views
 3.14 The MATERNITIES View
 3.15 The MIN_MAXS View
 3.16 The MIN_MAXS_SORTED View
 3.17 The MPI_EVENTS View
 3.18 The MTD_CYCLES View
 3.19 The PARENTS View
 3.20 The PCSKINS_SORTED View
 3.21 The PCV_STATS View
 3.22 The POINTS and POINTS_SORTED Views
 3.23 The POTENTIAL_DADS View
 3.24 The PROPORTIONAL_RANKS View
 3.25 The QUADS View
 3.26 The SEXSKINS_CYCLES and SEXSKINS_CYCLES_SORTED Views
 3.27 The SWERB view
 3.28 The SWERB_DEPARTS view
 3.29 The SWERB_LOC_GPS_XY view
 3.30 The SWERB_LOCS view
 3.31 The SWERB_UPLOAD view
 3.32 The ULNA_STATS View
3.33 The TESTES_ARC_STATS View ... 72
3.34 The TESTES_DIAM_STATS View .. 75
3.35 The WPDETAILS_AFFECTEDPARTS View ... 77
3.36 The WP_HEALS View .. 78
3.37 The WP_REPORTS_OBSERVERS View .. 83

4 Views Which Add Gid To Tables .. 83

4.1 The BIRTH_GRP View .. 84
4.2 The ENTRYDATE_GRP View .. 84
4.3 The STATDATE_GRP View .. 85
4.4 The CONSORTDATES_GRP View .. 85
4.5 The CYCGAPDAYS_GRP View .. 86
4.6 The CYCGAPS_GRP View .. 86
4.7 The CYCSTATS_GRP View .. 87
4.8 The DARTINGS_GRP View .. 87
4.9 The DISPERSEDATES_GRP View ... 88
4.10 The MATUREDATES_GRP View ... 88
4.11 The MDINTERVALS_GRP View ... 89
4.12 The MMINTERVALS_GRP View ... 89
4.13 The PCSKINS_GRP View .. 90
4.14 The RANKDATES_GRP View ... 90
4.15 The REPSTATS_GRP View .. 91
List of Figures

1 Key to the Babase Entity Relationship Diagrams ... 1
2 Babase Group Membership Entity Relationship Diagram 3
3 Babase Life Events Entity Relationship Diagram ... 5
4 Babase Sexual Cycle Entity Relationship Diagram ... 8
5 Babase Sexual Cycle Day-To-Day Tables Entity Relationship Diagram 9
6 Babase Social Interactions Entity Relationship Diagram 10
7 Babase Multiparty Interactions Entity Relationship Diagram 11
8 Babase Darting Logistics and Morphology Entity and Relationship Diagram 12
9 Babase Darting Physiology Entity and Relationship Diagram 13
10 Babase Darting Samples Entity and Relationship Diagram 14
11 Babase Darting Teeth and Ticks Entity and Relationship Diagram 15
12 Babase Physical Traits Genetic Hybrid Score Data Entity Relationship Diagram 16
13 Babase Physical Traits Wounds and Pathologies Data Entity Relationship Diagram . 17
14 Babase SWERB Core Tables Entity Relationship Diagram 18
15 Babase SWERB Grove/Waterhole Location Tables Entity Relationship Diagram 19
16 Babase Manual Weather Data Entity Relationship Diagram 20
17 Babase WeatherHawk Data Entity Relationship Diagram 21
18 Warning Sub-System Entity Relationship Diagram .. 22
19 Query Defining the ACTOR_ACTEES View .. 23
20 Entity Relationship Diagram of the ACTOR_ACTEES View 24
21 Query Defining the ANESTH_STATS View ... 24
22 Entity Relationship Diagram of the ANESTH_STATS View 25
23 Query Defining the BODYTEMP_STATS View .. 25
24 Entity Relationship Diagram of the BODYTEMP_STATS View 26
25 Query Defining the CENSUS_DEMOG View .. 26
26 Entity Relationship Diagram of the CENSUS_DEMOG View 26
27 Query Defining the CHEST_STATS View ... 27
28 Entity Relationship Diagram of the CHEST_STATS View 27
29 Query Defining the CROWNRUMP_STATS View ... 28
30 Entity Relationship Diagram of the CROWNRUMP_STATS View 28
31 Query Defining the CYCLES_SEXSKINS View ... 28
32 Entity Relationship Diagram of the CYCLES_SEXSKINS View 29
33 Query Defining the CYCPOINTS_CYCLES View .. 29
34 Entity Relationship Diagram of the CYCPOINTS_CYCLES View 29
35 Query Defining the DSAMPLES View .. 31
36 Query Defining the DEMOG_CENSUS View .. 32
37 Entity Relationship Diagram of the DEMOG_CENSUS View 32
<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>Query Defining the DENT_CODES View</td>
</tr>
<tr>
<td>39</td>
<td>Entity Relationship Diagram of the DENT_CODES View</td>
</tr>
<tr>
<td>40</td>
<td>Query Defining the DENT_SITES View</td>
</tr>
<tr>
<td>41</td>
<td>Entity Relationship Diagram of the DENT_SITES View</td>
</tr>
<tr>
<td>42</td>
<td>Query Defining the INTERACT View</td>
</tr>
<tr>
<td>43</td>
<td>Entity Relationship Diagram of the INTERACT View</td>
</tr>
<tr>
<td>44</td>
<td>Query Defining the MATERNITIES View</td>
</tr>
<tr>
<td>45</td>
<td>Entity Relationship Diagram of the MATERNITIES View</td>
</tr>
<tr>
<td>46</td>
<td>Query Defining the MIN_MAXS View</td>
</tr>
<tr>
<td>47</td>
<td>Entity Relationship Diagram of the MIN_MAXS View</td>
</tr>
<tr>
<td>48</td>
<td>Query Defining the MIN_MAXS_SORTED View</td>
</tr>
<tr>
<td>49</td>
<td>Entity Relationship Diagram of the MIN_MAXS_SORTED View</td>
</tr>
<tr>
<td>50</td>
<td>Query Defining the MPI_EVENTS View</td>
</tr>
<tr>
<td>51</td>
<td>Entity Relationship Diagram of the MPI_EVENTS View</td>
</tr>
<tr>
<td>52</td>
<td>Query Defining the MTD_CYCLES View</td>
</tr>
<tr>
<td>53</td>
<td>Entity Relationship Diagram of the MTD_CYCLES View</td>
</tr>
<tr>
<td>54</td>
<td>Query Defining the PARENTS View</td>
</tr>
<tr>
<td>55</td>
<td>Entity Relationship Diagram of the PARENTS View</td>
</tr>
<tr>
<td>56</td>
<td>Query Defining the PCSKINS_SORTED View</td>
</tr>
<tr>
<td>57</td>
<td>Entity Relationship Diagram of the PCSKINS_SORTED View</td>
</tr>
<tr>
<td>58</td>
<td>Query Defining the PCV_STATS View</td>
</tr>
<tr>
<td>59</td>
<td>Entity Relationship Diagram of the PCV_STATS View</td>
</tr>
<tr>
<td>60</td>
<td>Query Defining the POINTS View</td>
</tr>
<tr>
<td>61</td>
<td>Entity Relationship Diagram of the POINTS View</td>
</tr>
<tr>
<td>62</td>
<td>Query Defining the POTENTIAL_DADS View</td>
</tr>
<tr>
<td>63</td>
<td>Entity Relationship Diagram of the foundation of the POTENTIAL_DADS View</td>
</tr>
<tr>
<td>64</td>
<td>Entity Relationship Diagram of that portion of the POTENTIAL_DADS View which places the mother and potential father in the same group during the fertile period</td>
</tr>
<tr>
<td>65</td>
<td>Entity Relationship Diagram of that portion of the POTENTIAL_DADS View having easily computed columns</td>
</tr>
<tr>
<td>66</td>
<td>Entity Relationship Diagram of that portion of the POTENTIAL_DADS View involving social interactions</td>
</tr>
<tr>
<td>67</td>
<td>Query Defining the PROPORTIONAL_RANKS View</td>
</tr>
<tr>
<td>68</td>
<td>Entity Relationship Diagram of the PROPORTIONAL_RANKS View</td>
</tr>
<tr>
<td>69</td>
<td>Query Defining the QUADS View</td>
</tr>
<tr>
<td>70</td>
<td>Entity Relationship Diagram of the QUADS View</td>
</tr>
<tr>
<td>71</td>
<td>Query Defining the SEXSKINS_CYCLES View</td>
</tr>
<tr>
<td>72</td>
<td>Entity Relationship Diagram of the SEXSKINS_CYCLES View</td>
</tr>
<tr>
<td>73</td>
<td>Query Defining the SWERB View</td>
</tr>
<tr>
<td>74</td>
<td>Entity Relationship Diagram of the SWERB View</td>
</tr>
<tr>
<td>75</td>
<td>Query Defining the SWERB_DEPARTS View</td>
</tr>
</tbody>
</table>
List of Tables

1 The Main Babase Tables ... 2
2 The Warning Sub-System Tables 3
3 The Babase Support Tables 4
4 The Warning Sub-System Support Tables 5
5 The Babase Views .. 6
6 The table_GRP Views .. 7
1 Babase Summarized

Warning
Tables which have names ending in "_DATA" should not be used, there is always a view of the data in these tables that may be used in their place. Tables ending in "_DATA" may change in future Babase minor releases, breaking queries and programs which use the table. Use of the corresponding views will ensure compatibility with future Babase releases.

2 The Babase ER Diagrams

The BABASE Database

Figure 1: Key to the Babase Entity Relationship Diagrams

1 At this time of this writing only males have data entered into RANKDATES in Babase.
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTERNATE_SNAMES in Babase:</td>
<td>One row for each</td>
</tr>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>rescinded sname</td>
</tr>
<tr>
<td>CENSUS in Babase:</td>
<td>day each individual is (or is not) observed in a group</td>
</tr>
<tr>
<td>CONSORTDATES in Babase:</td>
<td>male who has a known first consortship</td>
</tr>
<tr>
<td>DEMOG in Babase:</td>
<td>mention of an individual’s presence in a group within a field textual note</td>
</tr>
<tr>
<td>DISPERSEDATES in Babase:</td>
<td>male who has left his maternal study group</td>
</tr>
<tr>
<td>GROUPS in Babase:</td>
<td>group (including solitary males)</td>
</tr>
<tr>
<td>MATUREDATES in Babase:</td>
<td>individual who is sexually mature</td>
</tr>
<tr>
<td>RANKDATES in Babase:</td>
<td>individual who has attained adult rank</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAD_DATA in Babase:</td>
<td>offspring having a paternity analysis</td>
</tr>
<tr>
<td>MEMBERS in Babase:</td>
<td>day each individual is alive</td>
</tr>
<tr>
<td>RANKS in Babase:</td>
<td>month each individual is ranked in each group</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYBRIDGENE_ANALYSES in Babase:</td>
<td>analysis of genetic hybrid scores</td>
</tr>
<tr>
<td>HYBRIDGENE_SCORES in Babase:</td>
<td>genetic hybrid score for an individual from an analysis</td>
</tr>
<tr>
<td>WP_AFFECTEDPARTS in Babase:</td>
<td>body part affected by a specific wound/pathology</td>
</tr>
<tr>
<td>WP_DETAILS in Babase:</td>
<td>wound or pathology cluster indicated on a report</td>
</tr>
<tr>
<td>WP_HEALUPDATES in Babase:</td>
<td>update on progress of wound/pathology healing</td>
</tr>
<tr>
<td>WP_REPORTS in Babase:</td>
<td>wound/pathology report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCLES in Babase:</td>
<td>female’s cycle (complete or not)</td>
</tr>
<tr>
<td>CYCGAPS in Babase:</td>
<td>female for each initiation or cessation of a continuous period of observation</td>
</tr>
<tr>
<td>CYCGAPDAYS in Babase:</td>
<td>female for each day within a period during which there is not continuous observation</td>
</tr>
<tr>
<td>CYCSTATS in Babase:</td>
<td>day each female is cycling -- by M, T and Ddates</td>
</tr>
<tr>
<td>MDINTERVALS in Babase:</td>
<td>day each female is cycling and is between M and Ddates</td>
</tr>
<tr>
<td>MMINTERVALS in Babase:</td>
<td>day each female is cycling -- by Mdates</td>
</tr>
<tr>
<td>PCSKINS in Babase:</td>
<td>PCS color of each female</td>
</tr>
<tr>
<td>PREGS in Babase:</td>
<td>time a female becomes pregnant</td>
</tr>
<tr>
<td>SEXSKINS in Babase:</td>
<td>sexskin measurement of each female</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP_AFFECTEDPARTS in Babase:</td>
<td>body part affected by a specific wound/pathology</td>
</tr>
<tr>
<td>WP_DETAILS in Babase:</td>
<td>wound or pathology cluster indicated on a report</td>
</tr>
<tr>
<td>WP_AFFECTEDPARTS in Babase:</td>
<td>body part affected by a specific wound/pathology</td>
</tr>
<tr>
<td>WP_DETAILS in Babase:</td>
<td>wound or pathology cluster indicated on a report</td>
</tr>
<tr>
<td>WP_AFFECTEDPARTS in Babase:</td>
<td>body part affected by a specific wound/pathology</td>
</tr>
<tr>
<td>WP_DETAILS in Babase:</td>
<td>wound or pathology cluster indicated on a report</td>
</tr>
<tr>
<td>WP_AFFECTEDPARTS in Babase:</td>
<td>body part affected by a specific wound/pathology</td>
</tr>
<tr>
<td>WP_DETAILS in Babase:</td>
<td>wound or pathology cluster indicated on a report</td>
</tr>
<tr>
<td>WP_AFFECTEDPARTS in Babase:</td>
<td>body part affected by a specific wound/pathology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCLES in Babase:</td>
<td>female’s cycle (complete or not)</td>
</tr>
<tr>
<td>CYCGAPS in Babase:</td>
<td>female for each initiation or cessation of a continuous period of observation</td>
</tr>
<tr>
<td>CYCGAPDAYS in Babase:</td>
<td>female for each day within a period during which there is not continuous observation</td>
</tr>
<tr>
<td>CYCSTATS in Babase:</td>
<td>day each female is cycling -- by M, T and Ddates</td>
</tr>
<tr>
<td>MDINTERVALS in Babase:</td>
<td>day each female is cycling and is between M and Ddates</td>
</tr>
<tr>
<td>MMINTERVALS in Babase:</td>
<td>day each female is cycling -- by Mdates</td>
</tr>
<tr>
<td>PCSKINS in Babase:</td>
<td>PCS color of each female</td>
</tr>
<tr>
<td>PREGS in Babase:</td>
<td>time a female becomes pregnant</td>
</tr>
<tr>
<td>SEXSKINS in Babase:</td>
<td>sexskin measurement of each female</td>
</tr>
</tbody>
</table>
Table 2: The Warning Sub-System Tables

<table>
<thead>
<tr>
<th>Table in Babase:</th>
<th>One row for each</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEGRITY_QUERIES</td>
<td>query used to discover data integrity problems</td>
</tr>
<tr>
<td>INTEGRITY_WARNINGS</td>
<td>data integrity problem discovered by the warning sub-system</td>
</tr>
</tbody>
</table>

Figure 2: Babase Group Membership Entity Relationship Diagram
General Support Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Id Column</th>
<th>Related Column(s)</th>
<th>One entry for every possible choice of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODYPARTS in Babase:</td>
<td>Bodypart</td>
<td>TICKS in Babase::Bodypart in Babase::BODYPARTS in Babase::Bodyregion in Babase::WP_AFFECTEDPARTS in Babase::Bodypart in Babase::</td>
<td>part of the body</td>
</tr>
<tr>
<td>OBSERVERS in Babase:</td>
<td>Initials</td>
<td>SAMPLES in Babase::Observer in Babase::WREADINGS in Babase::WRperson in Babase::RGSETUPS in Babase::RGSPerson in Babase::CROWNRUMPS in Babase::CObserver in Babase::CHESTS in Babase::Chobserver in Babase::ULNAS in Babase::Uobserver in Babase::HUMERUSES in Babase::Huobserver in Babase::SWERB_OBSERVERS in Babase::Observer in Babase::</td>
<td>person who records information</td>
</tr>
<tr>
<td>OBSERVER.Roles in Babase:</td>
<td>Initials</td>
<td>OBSERVERS in Babase::Role in Babase::OBSERVERS in Babase::SWERB_Observer_Role in Babase::OBSERVERS in Babase::SWERB_Driver_Role in Babase::SWERB_OBSERVERS in Babase::Role in Babase::</td>
<td>way in which a person can be involved in the data collection process</td>
</tr>
<tr>
<td>UNKSNAMES in Babase:</td>
<td>Unksname</td>
<td>NEIGHBORS in Babase::Unksname in Babase::SWERB_UPLOAD in Babase::</td>
<td>problem in identifying neighbor of focal during point sampling or in identifying a lone male in a SWERB other group observation</td>
</tr>
</tbody>
</table>

Group Membership and Life Events

<table>
<thead>
<tr>
<th>Table</th>
<th>Id Column</th>
<th>Related Column(s)</th>
<th>One entry for every possible choice of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSTATUSES in Babase:</td>
<td>Bstatus</td>
<td>BIOGRAPH in Babase::Bstatus in Babase::</td>
<td>birthday estimation accuracy</td>
</tr>
<tr>
<td>CONFIDENCES in Babase:</td>
<td>Confidence</td>
<td>BIOGRAPH in Babase::DcauseNatureConfidence in Babase::BIOGRAPH in Babase::DcauseAgentConfidence in Babase::DISPERSEDATES in Babase::Dispconfidenc in Babase::BIOGRAPH in Babase::Matgrpconfidence in Babase::</td>
<td>degree of certitude in nature of death, agent of death, disperse date assignment, or maternal group assignment</td>
</tr>
<tr>
<td>DADSOFTWARE in Babase:</td>
<td>Software</td>
<td>DAD_DATA in Babase::Software in Babase::</td>
<td>software package used to perform genetic paternity analysis</td>
</tr>
<tr>
<td>DCAUSES in Babase:</td>
<td>Deause</td>
<td>BIOGRAPH in Babase::Deause in Babase::</td>
<td>cause of death</td>
</tr>
<tr>
<td>DEATHNATURES in Babase:</td>
<td>Nature</td>
<td>DCAUSES in Babase::Nature in Babase::</td>
<td>reason for death</td>
</tr>
<tr>
<td>DEMOG in Babase:</td>
<td></td>
<td>DEMOG in Babase::</td>
<td></td>
</tr>
</tbody>
</table>
Table 4: The Warning Sub-System Support Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Id Column</th>
<th>Related Column(s)</th>
<th>One entry for every possible choice of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>IQTYPES in Babase:</td>
<td>IQType</td>
<td>INTEGRITY_QUERIES in Babase:.Type in Babase:</td>
<td>kind of problem with data integrity</td>
</tr>
<tr>
<td>WARNING_REMARKS in Babase:</td>
<td>WRID</td>
<td>INTEGRITY_WARNINGS in Babase:.Category in Babase:</td>
<td>remark which might apply to more than one instance of questionable database integrity</td>
</tr>
</tbody>
</table>

Figure 3: Babase Life Events Entity Relationship Diagram
<table>
<thead>
<tr>
<th>View</th>
<th>One row for each</th>
<th>Purpose</th>
<th>Tables/Views used</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENSUS_DEMOG in Babase:</td>
<td>CENSUS in Babase: row</td>
<td>Maintenance of CENSUS in Babase: rows that are extended with DEMOG in Babase: information.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>CENSUS_DEMOG_SORTED in Babase:</td>
<td>CENSUS in Babase: row</td>
<td>Maintenance of CENSUS_DEMOG in Babase: rows in a pre-sorted fashion.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>CYCPOINTS_CYCLES in Babase:</td>
<td>CYCPOINTS in Babase: row</td>
<td>Maintenance of CYCPOINTS in Babase: rows that are extended with CYCLES in Babase: information.</td>
<td>CYCLES in Babase:, CYCPOINTS in Babase:</td>
</tr>
<tr>
<td>CYCPOINTS_CYCLES_SORTED in Babase:</td>
<td>CYCPOINTS in Babase: row</td>
<td>The CYCPOINTS_CYCLES in Babase: view sorted by CYCLES in Babase:.Sname in Babase:, by CYCPOINTS in Babase:.Date in Babase:.</td>
<td>CYCLES in Babase:, CYCPOINTS in Babase:</td>
</tr>
<tr>
<td>DEMOG_CENSUS in Babase:</td>
<td>DEMOG in Babase: row</td>
<td>Maintenance of DEMOG in Babase: rows.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>DEMOG_CENSUS_SORTED in Babase:</td>
<td>CENSUS in Babase: row</td>
<td>Maintenance of DEMOG_CENSUS in Babase: rows in a pre-sorted fashion.</td>
<td>CENSUS in Babase:, DEMOG in Babase:</td>
</tr>
<tr>
<td>GROUPS_HISTORY in Babase:</td>
<td>GROUPS in Babase: row</td>
<td>Depiction of GROUPS in Babase: rows in a more human-readable format.</td>
<td>GROUPS in Babase:</td>
</tr>
<tr>
<td>PARENTS in Babase:</td>
<td>BIOGRAPH in Babase: row for which there is either a row in MATERNITIES in Babase: with a record of the individual’s mother or there is a row in DAD_DATA in Babase: with a record of the individual’s father -- with a non-NULLDad_consensus in Babase:.</td>
<td>Easy access to parental information.</td>
<td>BIOGRAPH in Babase:, MATERNITIES in Babase:, DAD_DATA in Babase:, MEMBERS in Babase:</td>
</tr>
<tr>
<td>POTENTIAL_DADS in Babase:</td>
<td>(completed) female reproductive event for every male more than 2192 days old (approximately 6 years) present in the mother’s group during her fertile period</td>
<td>Research into paternity, especially the selection of potential fathers for further genetic testing.</td>
<td>MATERNITIES in Babase:, MEMBERS in Babase: (multiple times), ACTOR_ACTEES in Babase: (multiple times), BIOGRAPH in Babase:, RANKDATES in Babase:, MATUREDATES in Babase:</td>
</tr>
<tr>
<td>PROPORTIONAL_RANKS in Babase:</td>
<td>RANKS in Babase: row</td>
<td>Automatic calculation of proportional ranks from the ordinal ranks in RANKS in Babase:.</td>
<td>RANKS in Babase:</td>
</tr>
</tbody>
</table>

Physical Traits

<table>
<thead>
<tr>
<th>View</th>
<th>One row for each</th>
<th>Purpose</th>
<th>Tables/Views used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Babase Pocket Reference Guide

6 / 91
<table>
<thead>
<tr>
<th>Table</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>BIRTH_GRP in Babase:</td>
</tr>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>ENTRYDATE_GRP in Babase:</td>
</tr>
<tr>
<td>BIOGRAPH in Babase:</td>
<td>STATDATE_GRP in Babase:</td>
</tr>
<tr>
<td>CONSORTDATES in Babase:</td>
<td>CONSORTDATES_GRP in Babase:</td>
</tr>
<tr>
<td>CYCGAPDAYS in Babase:</td>
<td>CYCGAPDAYS_GRP in Babase:</td>
</tr>
<tr>
<td>CYCGAPS in Babase:</td>
<td>CYCGAPS_GRP in Babase:</td>
</tr>
<tr>
<td>CYCSTATS in Babase:</td>
<td>CYCSTATS_GRP in Babase:</td>
</tr>
<tr>
<td>DARTINGS in Babase:</td>
<td>DARTINGS_GRP in Babase:</td>
</tr>
<tr>
<td>DISPERSEDATES in Babase:</td>
<td>DISPERSEDATES_GRP in Babase:</td>
</tr>
<tr>
<td>MATUREDATES in Babase:</td>
<td>MATUREDATES_GRP in Babase:</td>
</tr>
<tr>
<td>MDINTERVALS in Babase:</td>
<td>MDINTERVALS_GRP in Babase:</td>
</tr>
<tr>
<td>MMINTERVALS in Babase:</td>
<td>MMINTERVALS_GRP in Babase:</td>
</tr>
<tr>
<td>PCSKINS in Babase:</td>
<td>PCSKINS_GRP in Babase:</td>
</tr>
<tr>
<td>RANKDATES in Babase:</td>
<td>RANKDATES_GRP in Babase:</td>
</tr>
<tr>
<td>REPSTATS in Babase:</td>
<td>REPSTATS_GRP in Babase:</td>
</tr>
</tbody>
</table>

Table 6: The table_GRP Views
Figure 4: Babase Sexual Cycle Entity Relationship Diagram
Figure 5: Babase Sexual Cycle Day-To-Day Tables Entity Relationship Diagram
Figure 6: Babase Social Interactions Entity Relationship Diagram
Figure 7: Babase Multiparty Interactions Entity Relationship Diagram
Figure 8: Babase Darter Logistics and Morphology Entity and Relationship Diagram
Figure 9: Babase Darting Physiology Entity and Relationship Diagram
Figure 10: Babase Darting Samples Entity and Relationship Diagram
Figure 11: Babase Darting Teeth and Ticks Entity and Relationship Diagram
Figure 12: Babase Physical Traits Genetic Hybrid Score Data Entity Relationship Diagram
Figure 13: Babase Physical Traits Wounds and Pathologies Data Entity Relationship Diagram
Figure 14: Babase SWERB Core Tables Entity Relationship Diagram
Figure 15: Babase SWERB Grove/Waterhole Location Tables Entity Relationship Diagram
Figure 16: Babase Manual Weather Data Entity Relationship Diagram
Figure 17: Babase WeatherHawk Data Entity Relationship Diagram
3 The Babase Views

For information on the operations (INSERT, UPDATE, DELETE) allowed by each view and their actions on the underlying tables see The Babase Views in Babase: of The Babase Reference Manual.
3.1 The ACTOR_ACTEES View

```sql
SELECT interact_data.iid AS iid,
    interact_data.sid AS sid,
    interact_data.act AS act,
    interact_data.date AS date,
    interact_data.start AS start,
    interact_data.stop AS stop,
    interact_data.observer AS observer,
    actor.partid AS actorid,
    COALESCE(actor.sname, '998'::CHAR(3)) AS actor,
    (SELECT actorms.grp
        FROM members AS actorms
        WHERE actorms.sname = actor.sname
            AND actorms.date = interact_data.date) AS actor_grp,
    actee.partid AS acteeid,
    COALESCE(actee.sname, '998'::CHAR(3)) AS actee,
    (SELECT acteems.grp
        FROM members AS acteems
        WHERE acteems.sname = actee.sname
            AND acteems.date = interact_data.date) AS actee_grp,
    interact_data.handwritten AS handwritten
FROM interact_data
    LEFT OUTER JOIN parts AS actor
    ON (actor.iid = interact_data.iid AND actor.role = 'R')
    LEFT OUTER JOIN parts AS actee
    ON (actee.iid = interact_data.iid AND actee.role = 'E');
```

Figure 19: Query Defining the ACTOR_ACTEES View
3.2 The ANESTH_STATS View

SELECT anesths.dartid AS dartid,
 count(*) AS ansamps,
 avg(anesths.anamount) AS anamount_mean,
 stddev(anesths.anamount) AS anamount_stddev
FROM anesths
GROUP BY anesths.dartid;

Figure 21: Query Defining the ANESTH_STATS View

Although a join on this column alone returns multiple rows, because there is another join on a different column only 1 row matches all the criteria. (The combination of Sname and Date is unique.)
3.3 The BODYTEMP_STATS View

```
SELECT bodytemps.dartid AS dartid,
       count(*) AS btsamps,
       avg(bodytemps.btemp) AS btemp_mean,
       stddev(bodytemps.btemp) AS btemp_stddev
FROM bodytemps
GROUP BY bodytemps.dartid;
```

Figure 22: Entity Relationship Diagram of the ANESTH_STATS View

Figure 23: Query Defining the BODYTEMP_STATS View
3.4 The CENSUS_DEMOG and CENSUS_DEMOG_SORTED Views

```sql
SELECT census.cenid AS cenid,
   census.sname AS sname,
   census.date AS date,
   census.grp ASgrp,
   census.status AS status,
   census.cen AS cen,
   demog.reference AS reference,
   demog.comment AS comment
FROM census LEFT OUTER JOIN demog ON (census.cenid = demog.cenid);
```

Figure 25: Query Defining the CENSUS_DEMOG View
3.5 The CHEST_STATS View

SELECT chests.dartid AS dartid
 , count(*) AS chsamps
 , avg(chests.chcircum) AS chcircum_mean
 , stddev(chests.chcircum) AS chcircum_stddev
 , avg(chests.chunadjusted) AS chunadjusted_mean
 , stddev(chests.chunadjusted) AS chunadjusted_stddev
FROM chests
GROUP BY chests.dartid;

Figure 27: Query Defining the CHEST_STATS View

Figure 28: Entity Relationship Diagram of the CHEST_STATS View
3.6 The CROWN RUMP_STATS View

```sql
SELECT crownrumps.dartid AS dartid,
       count(*) AS crsamps,
       avg(crownrumps.crlength) AS crlength_mean,
       stddev(crownrumps.crlength) AS crlength_stddev
FROM crownrumps
GROUP BY crownrumps.dartid;
```

Figure 29: Query Defining the CROWN RUMP_STATS View

![Diagram of CROWN RUMP_STATS View](image)

3.7 The CYCLES_SEXSKINS and CYCLES_SEXSKINS_SORTED Views

```sql
SELECT cycles.cid AS cid,
       cycles.sname AS sname,
       cycles.seq AS seq,
       cycles.series AS series,
       sexskins.sxid AS sxid,
       sexskins.date AS date,
       sexskins.size AS size
FROM cycles LEFT OUTER JOIN sexskins ON (cycles.cid = sexskins.cid);
```

Figure 31: Query Defining the CYCLES_SEXSKINS View

![Diagram of CYCLES_SEXSKINS View](image)
3.8 The CYCPOINTS_CYCLES and CYCPOINTS_CYCLES_SORTED Views

SELECT cycles.cid AS cid,
 , cycles.sname AS sname
 , cycles.seq AS seq
 , cycles.series AS series
 , cycpoints.cpid AS cpid
 , cycpoints.date AS date
 , cycpoints.edate AS edate
 , cycpoints.ldre AS ldate
 , cycpoints.code AS code
 , cycpoints.source AS source
FROM cycles, cycpoints
WHERE cycles.cid = cycpoints.cid;

Figure 32: Entity Relationship Diagram of the CYCLES_SEXSKINS View

Figure 33: Query Defining the CYCPOINTS_CYCLES View

Figure 34: Entity Relationship Diagram of the CYCPOINTS_CYCLES View
3.9 The DSAMPLES View

```sql
SELECT dartings.dartid,
       dartings.sname,
       dartings.date,
       members.grp,
       blood_unspecs.num AS bloodunspec,
       blood_paxgenes.num AS bloodpaxgene,
       blood_purpletops.num AS bloodpurpletops,
       blood_separators.num AS bloodseptube,
       blood_cpts.num AS bloodcpt,
       blood_trucultures.num AS bloodtruculture,
       blood_smears.num AS bloodsmear,
       tc_bloods.num AS tcblood,
       hair_unspecs.num AS hairunspec,
       hair_lengths.num AS hairlength,
       hair_cu_zns.num AS haircu_zn,
       teeth_3mouths.num AS mouthphotos3,
       teeth_lmandmolds.num AS lm1m2siliconemold,
       teeth_lmaxmolds.num AS lmaxillamold,
       teeth_lmol1mol2s.num AS lm1m2siliconemold,
       skin_punchs.num AS skinpunch,
       tc_skins.num AS tcskin,
       vag_swabs.num AS vaginalswab,
       cerv_swabs.num AS cervicalswab,
       fecal_formalin.num AS fecal_formalin,
       vaginal_ph.num AS vaginal_ph,
       palm_swab.num AS palm_swab,
       tongue_swab.num AS tongue_swab,
       tooth_plaque_swab.num AS tooth_plaque_swab,
       vagswab_microbiome.num AS vagswab_microbiome,
       glans_penis_swab.num AS glans_penis_swab,
       fecal_microbiome.num AS fecal_microbiome,
       nostrils_swab.num AS nostrils_swab,
       skin_behind_ear_swab.num AS skin_behind_ear_swab,
       skin_inside_elbow_swab.num AS skin_inside_elbow_swab
FROM dartings
JOIN members
   ON dartings.sname = members.sname
LEFT JOIN dart_samples blood_unspecs
   ON dartings.dartid = blood_unspecs.dartid
       AND blood_unspecs.ds_type = 1
LEFT JOIN dart_samples blood_paxgenes
   ON dartings.dartid = blood_paxgenes.dartid
       AND blood_paxgenes.ds_type = 2
LEFT JOIN dart_samples blood_purpletops
   ON dartings.dartid = blood_purpletops.dartid
       AND blood_purpletops.ds_type = 3
LEFT JOIN dart_samples blood_separators
   ON dartings.dartid = blood_separators.dartid
       AND blood_separators.ds_type = 4
LEFT JOIN dart_samples blood_cpts
   ON dartings.dartid = blood_cpts.dartid
       AND blood_cpts.ds_type = 5
LEFT JOIN dart_samples blood_trucultures
   ON dartings.dartid = blood_trucultures.dartid
       AND blood_trucultures.ds_type = 6
LEFT JOIN dart_samples blood_smears
   ON dartings.dartid = blood_smears.dartid
       AND blood_smears.ds_type = 7
LEFT JOIN dart_samples hair_unspecs
   ON dartings.dartid = hair_unspecs.dartid
```

Figure 35: Query Defining the DSAMPLES View
3.10 The DEMOG_CENSUS and DEMOG_CENSUS_SORTED Views

```
SELECT census.cenid AS cenid,
      census.sname AS sname,
      census.date AS date,
      census.grp AS grp,
      census.status AS status,
      census.cen AS cen,
      demog.reference AS reference,
      demog.comment AS comment
FROM census, demog
WHERE census.cenid = demog.cenid;
```

Figure 36: Query Defining the DEMOG_CENSUS View

Figure 37: Entity Relationship Diagram of the DEMOG_CENSUS View
3.11 The DENT_CODES View

```
SELECT teethdartids.dartid AS dird
, rum3.rum3tstate AS rum3tstate
, rum3.rum3tcondition AS rum3tcondition
, rum2.rum2tstate AS rum2tstate
, rum2.rum2tcondition AS rum2tcondition
, rum1.rum1tstate AS rum1tstate
, rum1.rum1tcondition AS rum1tcondition
, rup2.rup2tstate AS rup2tstate
, rup2.rup2tcondition AS rup2tcondition
, rup1.rup1tstate AS rup1tstate
, rup1.rup1tcondition AS rup1tcondition
, ruc.ructstate AS ructstate
, ruc.ructcondition AS ructcondition
, rui2.rui2tstate AS rui2tstate
, rui2.rui2tcondition AS rui2tcondition
, ru11.ru11tstate AS ru11tstate
, ru11.ru11tcondition AS ru11tcondition
, lui1.lui1tstate AS lui1tstate
, lui1.lui1tcondition AS lui1tcondition
, lui2.lui2tstate AS lui2tstate
, lui2.lui2tcondition AS lui2tcondition
, lum1.lum1tstate AS lum1tstate
, lum1.lum1tcondition AS lum1tcondition
, lum2.lum2tstate AS lum2tstate
, lum2.lum2tcondition AS lum2tcondition
, lum3.lum3tstate AS lum3tstate
, lum3.lum3tcondition AS lum3tcondition
, lrm3.lrm3tstate AS lrm3tstate
, lrm3.lrm3tcondition AS lrm3tcondition
, lrm2.lrm2tstate AS lrm2tstate
, lrm2.lrm2tcondition AS lrm2tcondition
, lrm1.lrm1tstate AS lrm1tstate
, lrm1.lrm1tcondition AS lrm1tcondition
, lrp2.rp2tstate AS lrp2tstate
, lrp2.rp2tcondition AS lrp2tcondition
, lrp1.rp1tstate AS lrp1tstate
, lrp1.rp1tcondition AS lrp1tcondition
, llc.llctstate AS llctstate
, llc.llctcondition AS llctcondition
, ll12.ll12tstate AS ll12tstate
, ll12.ll12tcondition AS ll12tcondition
, ll11.ll11tstate AS ll11tstate
, ll11.ll11tcondition AS ll11tcondition
, rl11.r11tstate AS rl11tstate
, rl11.r11tcondition AS rl11tcondition
, rl12.r12tstate AS rl12tstate
, rl12.r12tcondition AS rl12tcondition
, rl1c.rc1tstate AS rlctstate
, rl1c.rc1tcondition AS rlctcondition
, rl11c.rc1ltstate AS rl11tstate
, rl2c.rc2tstate AS rl2tstate
, rl2c.rc2tcondition AS rl2tcondition
, rl1p1.rlp1tstate AS rlp1tstate
, rl2p2.rlp2tstate AS rlp2tstate
, rl2p2.rlp2tcondition AS rlp2tcondition
, rl1p1.rlp1tcondition AS rlp1tcondition
```

Figure 38: Query Defining the DENT_CODES View
Figure 39: Entity Relationship Diagram of the DENT_CODES View

- These columns repeat: there is a set of these columns for every TOOTHCODES row. The "TC" shown here in each column name is replaced in the actual column name with a TOOTHCODE_Tooth value.
3.12 The DENT_SITES View

```
SELECT teethdartids.dartid AS dartid,
       s1.sl1tstate AS sl1tstate,
       s1.sl1tcondition AS sl1tcondition,
       s1.sl1deciduous AS sl1deciduous,
       s2.sl2tstate AS sl2tstate,
       s2.sl2tcondition AS sl2tcondition,
       s2.sl2deciduous AS sl2deciduous,
       s3.sl3tstate AS sl3tstate,
       s3.sl3tcondition AS sl3tcondition,
       s3.sl3deciduous AS sl3deciduous,
       s4.sl4tstate AS sl4tstate,
       s4.sl4tcondition AS sl4tcondition,
       s4.sl4deciduous AS sl4deciduous,
       s5.sl5tstate AS sl5tstate,
       s5.sl5tcondition AS sl5tcondition,
       s5.sl5deciduous AS sl5deciduous,
       s6.sl6tstate AS sl6tstate,
       s6.sl6tcondition AS sl6tcondition,
       s6.sl6deciduous AS sl6deciduous,
       s7.sl7tstate AS sl7tstate,
       s7.sl7tcondition AS sl7tcondition,
       s7.sl7deciduous AS sl7deciduous,
       s8.sl8tstate AS sl8tstate,
       s8.sl8tcondition AS sl8tcondition,
       s8.sl8deciduous AS sl8deciduous,
       s9.sl9tstate AS sl9tstate,
       s9.sl9tcondition AS sl9tcondition,
       s9.sl9deciduous AS sl9deciduous,
       s10.sl10tstate AS sl10tstate,
       s10.sl10tcondition AS sl10tcondition,
       s10.sl10deciduous AS sl10deciduous,
       s11.sl11tstate AS sl11tstate,
       s11.sl11tcondition AS sl11tcondition,
       s11.sl11deciduous AS sl11deciduous,
       s12.sl12tstate AS sl12tstate,
       s12.sl12tcondition AS sl12tcondition,
       s12.sl12deciduous AS sl12deciduous,
       s13.sl13tstate AS sl13tstate,
       s13.sl13tcondition AS sl13tcondition,
       s13.sl13deciduous AS sl13deciduous,
       s14.sl14tstate AS sl14tstate,
       s14.sl14tcondition AS sl14tcondition,
       s14.sl14deciduous AS sl14deciduous,
       s15.sl15tstate AS sl15tstate,
       s15.sl15tcondition AS sl15tcondition,
       s15.sl15deciduous AS sl15deciduous,
       s16.sl16tstate AS sl16tstate,
       s16.sl16tcondition AS sl16tcondition,
       s16.sl16deciduous AS sl16deciduous,
       s17.sl17tstate AS sl17tstate,
       s17.sl17tcondition AS sl17tcondition,
       s17.sl17deciduous AS sl17deciduous,
       s18.sl18tstate AS sl18tstate,
       s18.sl18tcondition AS sl18tcondition,
       s18.sl18deciduous AS sl18deciduous,
       s19.sl19tstate AS sl19tstate,
       s19.sl19tcondition AS sl19tcondition,
       s19.sl19deciduous AS sl19deciduous,
       s20.sl20tstate AS sl20tstate,
       s20.sl20tcondition AS sl20tcondition,
       s20.sl20deciduous AS sl20deciduous,
       s21.sl21tstate AS sl21tstate,
       s21.sl21tcondition AS sl21tcondition,
       s21.sl21deciduous AS sl21deciduous,
       s22.sl22tstate AS sl22tstate,
       s22.sl22tcondition AS sl22tcondition,
       s22.sl22deciduous AS sl22deciduous,
       s23.sl23tstate AS sl23tstate,
       s23.sl23tcondition AS sl23tcondition,
       s23.sl23deciduous AS sl23deciduous,
       s24.sl24tstate AS sl24tstate,
       s24.sl24tcondition AS sl24tcondition,
       s24.sl24deciduous AS sl24deciduous,
       s25.sl25tstate AS sl25tstate,
       s25.sl25tcondition AS sl25tcondition,
       s25.sl25deciduous AS sl25deciduous,
       s26.sl26tstate AS sl26tstate,
       s26.sl26tcondition AS sl26tcondition,
       s26.sl26deciduous AS sl26deciduous,
       s27.sl27tstate AS sl27tstate,
       s27.sl27tcondition AS sl27tcondition,
       s27.sl27deciduous AS sl27deciduous,
       s28.sl28tstate AS sl28tstate,
       s28.sl28tcondition AS sl28tcondition,
       s28.sl28deciduous AS sl28deciduous,
       s29.sl29tstate AS sl29tstate,
       s29.sl29tcondition AS sl29tcondition,
       s29.sl29deciduous AS sl29deciduous,
       s30.sl30tstate AS sl30tstate,
       s30.sl30tcondition AS sl30tcondition,
       s30.sl30deciduous AS sl30deciduous,
       s31.sl31tstate AS sl31tstate,
       s31.sl31tcondition AS sl31tcondition,
       s31.sl31deciduous AS sl31deciduous,
       s32.sl32tstate AS sl32tstate,
       s32.sl32tcondition AS sl32tcondition,
       s32.sl32deciduous AS sl32deciduous
FROM toothcodes, teeth
WHERE toothcodes.toothsite = '32'
```
Figure 41: Entity Relationship Diagram of the DENT_SITES View

The Tstate value of the TEETH row having the correct Darid and a related Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

The Tcondition value of the TEETH row having the correct Darid and a related Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

The Deciduous value of the TOOTHCODES row related to the TEETH row having the correct Darid and a Toothsite value corresponding with the Toothsite code appearing in the column name, or NULL if no such row exists.

+ These columns repeat - there is a set of these columns for every distinct TOOTHCODES Toothsite value. The "TS" shown here in each column name is replaced in the actual column name with the letter "s" followed by a TOOTHCODE Toothsite value.
3.13 The INTERACT and INTERACT_SORTED Views

```
SELECT iid AS iid
, interact_data.sid AS sid
, interact_data.act AS act
, acts.class AS class
, interact_data.date AS date
, julian(interact_data.date) AS jdate
, interact_data.start AS start
, spm(interact_data.start) AS startspm
, stop AS stop
, spm(interact_data.stop) AS stopspm
, interact_data.observer AS observer
, interact_data.handwritten AS handwritten
FROM interact_data
JOIN acts
    ON (acts.act = interact_data.act);
```

Figure 42: Query Defining the INTERACT View

![INTERACT_DATA](image)

Figure 43: Entity Relationship Diagram of the INTERACT View
3.14 The MATERNITIES View

```
SELECT cycles.sname AS mom,
       cycles.cid AS cid,
       cycles.seq AS seq,
       cycles.series AS series,
       cycpoints.cpid AS conceive,
       cycpoints.date AS zdate,
       members.grp AS zdate_grp,
       cycpoints.edate AS edate,
       cycpoints.ldate AS ldate,
       cycpoints.source AS source,
       pregs.pid AS pid,
       pregs.parity AS parity,
       biograph.bioid AS child_bioid,
       biograph.sname AS child,
       biograph.birth AS birth
FROM cycles
JOIN cycpoints ON (cycpoints.cid = cycles.cid)
JOIN members ON (members.date = cycpoints.date
                AND members.sname = cycles.sname)
JOIN pregs ON (pregs.conceive = cycpoints.cpid)
JOIN biograph ON (pregs.pid = biograph.pid);
```

Figure 44: Query Defining the MATERNITIES View
Figure 45: Entity Relationship Diagram of the MATERNITIES View

+ Although a join on this column alone returns multiple rows, because there is another join on a different column only 1 row matches all the criteria. (The combination of Sname and Date is unique.)
3.15 The MIN_MAXS View

```sql
SELECT wreadings.wrid AS wrid
, wreadings.wstation AS wstation
, wreadings.wrdaytime AS wrdaytime
, wreadings.estdaytime AS estdaytime
, wreadings.wrperson AS wrperson
, wreadings.wrnotes AS wrnotes
, tempmins.tempmin AS tempmin
, tempmaxs.tempmax AS tempmax
, raingauges.rgspan AS rgspan
, raingauges.estrgspan AS estrgspan
, raingauges.rain AS rain
FROM wreadings
  LEFT OUTER JOIN tempmins
    ON wreadings.wrid = tempmins.wrid
  LEFT OUTER JOIN tempmaxs
    ON wreadings.wrid = tempmaxs.wrid
  LEFT OUTER JOIN raingauges
    ON wreadings.wrid = raingauges.wrid;
```

Figure 46: Query Defining the MIN_MAXS View
Figure 47: Entity Relationship Diagram of the MIN_MAXS View
3.16 The MIN_MAXS_SORTED View

SELECT wreadings.wrid AS wrid
 , wreadings.wstation AS wstation
 , wreadings.wrdaytime AS wrdaytime
 , wreadings.estdaytime AS estdaytime
 , wreadings.wrperson AS wrperson
 , wreadings.wrnotes AS wrnotes
 , tempmins.tempmin AS tempmin
 , tempmaxs.tempmax AS tempmax
 , raingauges.rgspan AS rgspan
 , raingauges.estrgspan AS estrgspan
 , raingauges.rain AS rain
FROM wreadings
 LEFT OUTER JOIN tempmins
 ON wreadings.wrid = tempmins.wrid
 LEFT OUTER JOIN tempmaxs
 ON wreadings.wrid = tempmaxs.wrid
 LEFT OUTER JOIN raingauges
 ON wreadings.wrid = raingauges.wrid
ORDER BY wreadings.wrdaytime, wreadings.wstation;;

Figure 48: Query Defining the MIN_MAXS_SORTED View
Figure 49: Entity Relationship Diagram of the MIN_MAXS_SORTED View
3.17 The MPI_EVENTS View

SELECT mpis.mpiid AS mpiid
 , mpis.date AS date
 , mpis.context_type AS context_type
 , mpis.context AS context
 , mpi_data.mpidid AS mpidid
 , mpi_data.seq AS seq
 , mpi_data.mpiact AS mpiact
 , actor.mpidid AS actorid
 , actor.sname AS actor
 , actor.unksname AS unkactor
 , actee.mpidid AS acteeid
 , actee.sname AS actee
 , actee.unksname AS unkactee
 , CASE WHEN EXISTS(SELECT 1
 FROM mpiacts
 WHERE mpiacts.mpiact = mpi_data.mpiact
 AND mpiacts.kind = 'H')
 THEN
 EXISTS(SELECT 1
 FROM mpi_data AS request,
 mpiacts,
 mpi_parts AS requestor,
 mpi_parts AS requestee
 WHERE request.mpiid = mpi_data.mpiid
 AND request.seq < mpi_data.seq
 AND mpiacts.mpiact = request.mpiact
 AND mpiacts.kind = 'R'
 AND requestor.mpidid = request.mpidid
 AND requestor.role = 'R'
 AND requestor.sname = actee.sname
 AND requestee.mpidid = request.mpidid
 AND requestee.role = 'E'
 AND requestee.sname = actor.sname)
 ELSE
 NULL
 END AS solicited
 , EXISTS(SELECT 1
 FROM mpi_data AS initial,
 mpiacts
 WHERE initial.mpiid = mpi_data.mpiid
 AND initial.seq = 1
 AND mpiacts.mpiact = initial.mpiact
 AND mpiacts.decided)
 AS decided
 , mpi_data.helped AS helped
 , mpi_data.active AS active
FROM mpis
 LEFT OUTER JOIN mpi_data ON (mpis.mpiid = mpi_data.mpiid)
 LEFT OUTER JOIN mpi_parts AS actor
 ON (actor.mpidid = mpi_data.mpidid AND actor.role = 'R')
 LEFT OUTER JOIN mpi_parts AS actee
 ON (actee.mpidid = mpi_data.mpidid AND actee.role = 'E');

Figure 50: Query Defining the MPI_EVENTS View
Figure 51: Entity Relationship Diagram of the MPI_EVENTS View
3.18 The MTD_CYCLES View

```
FROM cycles
LEFT OUTER JOIN cycpoints AS mcp ON (mcp.cid = cycles.cid AND mcp.code = 'M')
LEFT OUTER JOIN cycpoints AS tcp ON (tcp.cid = cycles.cid AND tcp.code = 'T')
LEFT OUTER JOIN cycpoints AS dcp ON (dcp.cid = cycles.cid AND dcp.code = 'D')
ORDER BY cycles.sname, cycles.seq;
```

Figure 52: Query Defining the MTD_CYCLES View
Figure 53: Entity Relationship Diagram of the MTD_CYCLES View
3.19 The PARENTS View

SELECT biograph.sname AS kid
 , maternities.mom AS mom
 , dad_data.dad_consensus AS dad
 , maternities.zdate AS zdate
 , dad_data.dadid AS dadid
 , maternities.zdate_grp AS momgrp
 , members.grp AS dadgrp
FROM biograph
 LEFT OUTER JOIN maternities
 ON (maternities.child = biograph.sname)
 LEFT OUTER JOIN dad_data
 ON (dad_data.kid = biograph.sname)
 LEFT OUTER JOIN members
 ON (members.sname = dad_data.dad_consensus
 AND members.date = maternities.zdate)
WHERE maternities.mom IS NOT NULL
 OR dad_data.dad_consensus IS NOT NULL;

Figure 54: Query Defining the PARENTS View
3.20 The PCSKINS_SORTED View

```sql
SELECT pcskins.pcsid AS pcsid
      , pcskins.sname AS sname
      , pcskins.date AS date
      , pcskins.color AS color
FROM pcskins
ORDER BY sname, date;
```

Figure 55: Entity Relationship Diagram of the PARENTS View

- A BIOGRAPH row does not appear in this view unless there is either a related DAD_DATA row or a related MATERNITIES row.

- A MEMBERS row appears in this view only when related to both a DAD_DATA and a MATERNITIES row.

Figure 56: Query Defining the PCSKINS_SORTED View
3.21 The PCV_STATS View

```sql
SELECT pcvs.dartid AS dartid,
       count(*) AS pcvsamps,
       avg(pcvs.pcv) AS pcv_mean,
       stddev(pcvs.pcv) AS pcv_stddev
FROM pcvs
GROUP BY pcvs.dartid;
```

Figure 58: Query Defining the PCV_STATS View
3.22 The POINTS and POINTS_SORTED Views

SELECT pntid AS pntid,
 sid AS sid,
 activity AS activity,
 posture AS posture,
 foodcode AS foodcode,
 ptime AS ptime,
 spm(ptime) AS ptimespm
FROM point_data;

Figure 60: Query Defining the POINTS View

<table>
<thead>
<tr>
<th>POINT_DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pntid (Pntid)</td>
</tr>
<tr>
<td>Sid (Sid)</td>
</tr>
<tr>
<td>Activity * (Activity)</td>
</tr>
<tr>
<td>Posture * (Posture)</td>
</tr>
<tr>
<td>Foodcode * (Foodcode)</td>
</tr>
<tr>
<td>Ptime (Ptime)</td>
</tr>
<tr>
<td>(Ptimespm)</td>
</tr>
</tbody>
</table>

Figure 61: Entity Relationship Diagram of the POINTS View
3.23 The POTENTIAL_DADS View

```
SELECT maternities.child_bioid AS bioid,
       maternities.child AS kid,
       maternities.mom AS mom,
       maternities.zdate AS zdate,
       maternities.zdate_grp AS grp,
       pdads.sname AS pdad,
       CASE
           WHEN rankdates.ranked <= maternities.zdate
               THEN 'A'
           WHEN maturedates.matured <= maternities.zdate
               THEN 'S'
           ELSE 'O'
       END
       AS status,
       maternities.zdate - pdads.birth AS pdad_age_days,
       trunc((maternities.zdate - pdads.birth) / 365.25, 1) AS pdad_age_years,
       (SELECT count(*)
        FROM members AS dadmembers
        JOIN members AS mommembers
        ON (mommembers.date = dadmembers.date
            AND supergroup(mommembers.grp, mommembers.date) = supergroup(dadmembers.grp, dadmembers.date))
        WHERE dadmembers.sname = pdads.sname
        AND dadmembers.date < maternities.zdate
        AND dadmembers.date >= maternities.zdate - 5
        AND mommembers.sname = maternities.mom
        AND mommembers.date < maternities.zdate
        AND mommembers.date >= maternities.zdate - 5)
       AS estrous_presence,
       (SELECT count(*)
        FROM actor_actees
        WHERE actor_actees.date < maternities.zdate
        AND actor_actees.date >= maternities.zdate - 5
        AND (actor_actees.act = 'M'
             OR actor_actees.act = 'E')
        AND actor_actees.actor = pdads.sname
        AND actor_actees.actee = maternities.mom)
       AS estrous_me,
       (SELECT count(*)
        FROM actor_actees
        WHERE actor_actees.date < maternities.zdate
        AND actor_actees.date >= maternities.zdate - 5
        AND actor_actees.act = 'C'
        AND actor_actees.actor = pdads.sname
        AND actor_actees.actee = maternities.mom)
       AS estrous_c
FROM maternities
JOIN biograph AS pdads
ON (pdads.sname
    IN (SELECT dadmembers.sname
         FROM members AS dadmembers
         JOIN members AS mommembers
         ON (mommembers.date = dadmembers.date
             AND supergroup(mommembers.grp, mommembers.date) = supergroup(dadmembers.grp, dadmembers.date))
         WHERE dadmembers.sname = pdads.sname
         AND dadmembers.date < maternities.zdate
         AND dadmembers.date >= maternities.zdate - 5
         AND mommembers.sname = maternities.mom
         AND mommembers.date < maternities.zdate
         AND mommembers.date >= maternities.zdate - 5))
LEFT OUTER JOIN rankdates
ON (rankdates.sname = pdads.sname)
LEFT OUTER JOIN maturedates
ON (maturedates.sname = pdads.sname)
WHERE pdads.sex = 'M'
-- Speed things up by eliminating potential dads
-- who could not possibly interpolate into the mom's group
-- during the fertile period.
AND pdads.statdate >= maternities.zdate - 5 - 14
-- Potential dad must be at least 2192 days old
-- (approximately 6 years) on the zdate.
AND maternities.zdate - pdads.birth >= 2192;
```

Figure 62: Query Defining the POTENTIAL_DADS View
Figure 63: Entity Relationship Diagram of the foundation of the POTENTIAL_DADS View

* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.
Figure 64: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View which places the mother and potential father in the same group during the fertile period.

** This subquery is repeated twice in the view, once to test BIOGRAPH rows for inclusion as potential dads and again to compute Estrous_prelence.

* POADS is an alias for BIOGRAPH representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a POADS row.
* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.

Figure 65: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View having easily computed columns
Figure 66: Entity Relationship Diagram of that portion of the POTENTIAL_DADS View involving social interactions

** This subquery on ACTOR_ACTEES is repeated twice in the view, once to compute Estrous_me and once to compute Estrous_c.

* PDADS is an alias for BIOGRAPH, representing those BIOGRAPH rows that satisfy the conditions required to be considered a potential dad of a given kid. It does not appear anywhere as an independent entity. Additional conditions, as shown on other diagrams, must also be true for a BIOGRAPH row to be a PDADS row.
3.24 The PROPORTIONAL_RANKS View

WITH num_indivs AS (
 SELECT ranks.rnkdate,
 ranks.grp,
 ranks.rnktype,
 count(*) AS num_members
 FROM ranks
 GROUP BY ranks.rnkdate, ranks.grp, ranks.rnktype)

SELECT ranks.rnkid AS rnkid,
 ranks.sname AS sname,
 ranks.rnkdate AS rnkdate,
 ranks.grp AS grp,
 ranks.rnktype AS rnktype,
 ranks.rank AS ordrank,
 CASE
 WHEN num_indivs.num_members = 1 THEN 1::numeric
 ELSE 1 - ((ranks.rank - 1)::numeric / (num_indivs.num_members - 1):: numeric)
 END::numeric(5,4) AS proprank
FROM ranks
JOIN num_indivs
ON (num_indivs.rnkdate = ranks.rnkdate
 AND num_indivs.grp = ranks.grp
 AND num_indivs.rnktype = ranks.rnktype);

Figure 67: Query Defining the PROPORTIONAL_RANKS View

Figure 68: Entity Relationship Diagram of the PROPORTIONAL_RANKS View

* NUM_INDIVS is a subquery from RANKS, in which the number of RANKS rows (grouped by Rnkdate, Grp, and Rnktype) is counted. It does not appear anywhere as an independent entity.
3.25 The QUADS View

```
SELECT quad_data.quad AS quad,
       ST_X(quad_data.xyloc) AS x,
       ST_Y(quad_data.xyloc) AS y,
       quad_data.aerial AS aerial
FROM quad_data;
```

Figure 69: Query Defining the QUADS View

3.26 The SEXSKINS_CYCLES and SEXSKINS_CYCLES_SORTED Views

```
SELECT cycles.cid AS cid,
       cycles.sname AS sname,
       cycles.seq AS seq,
       cycles.series AS series,
       sexskins.sxid AS sxid,
       sexskins.date AS date,
       sexskins.size AS size
FROM sexskins, cycles
WHERE cycles.cid = sexskins.cid
ORDER BY cycles.sname, sexskins.date;
```

Figure 71: Query Defining the SEXSKINS_CYCLES View
Figure 72: Entity Relationship Diagram of the SEXSKINS_CYCLES View
3.27 The SWERB view

SELECT swerb_data.swid AS swid,
 swerb_departs_data.did AS did,
 swerb_departs_data.date AS date,
 swerb_data.time AS time,
 swerb_bes.beid AS beid,
 swerb_bes.focal_grp AS focal_grp,
 swerb_bes.seq AS seq,
 swerb_data.event AS event,
 swerb_data.seen_grp AS seen_grp,
 swerb_data.lone_animal AS lone_animal,
 swerb_data.quad AS quad,
 CASE
 WHEN swerb_data.xyloc IS NULL
 THEN 'quad'
 ELSE 'gps'
 END AS xysource,
 COALESCE(ST_X(swerb_data.xyloc), ST_X(quad_data.xyloc)) AS x,
 COALESCE(ST_Y(swerb_data.xyloc), ST_Y(quad_data.xyloc)) AS y,
 swerb_data.altitude AS altitude,
 swerb_data.pdop AS pdop,
 swerb_data.accuracy AS accuracy,
 swerb_data.subgroup AS subgroup,
 swerb_data.ogdistance AS ogdistance,
 swerb_data.gps_datetime AS gps_datetime,
 swerb_data.garmincode AS garmincode,
 swerb_data.predator AS predator,
 swerb_loc_data.loc AS loc,
 swerb_loc_data.adcode AS adcode,
 adcodes.adn AS adn,
 swerb_loc_data.loc_status AS loc_status,
 swerb_loc_data.adtime AS adtime,
 ST_X(swerb_loc_gps.xyloc) AS second_x,
 ST_Y(swerb_loc_gps.xyloc) AS second_y,
 swerb_loc_gps.altitude AS second_altitude,
 swerb_loc_gps.pdop AS second_pdop,
 swerb_loc_gps.accuracy AS second_accuracy,
 swerb_loc_gps.gps_datetime AS second_gps_datetime,
 swerb_loc_gps.garmincode AS second_garmincode,
 swerb_bes.start AS start,
 swerb_bes.btimeest AS btimeest,
 swerb_bes.bsource AS bsource,
 swerb_bes.stop AS stop,
 swerb_bes.etimeest AS etimeest,
 swerb_bes.esource AS esource,
 swerb_bes.is_effort AS is_effort,
 swerb_departs_gps.gps AS gps,
 swerb_bes.notes AS notes
FROM swerb_data
 LEFT OUTER JOIN quad_data
 ON (quad_data.quad = swerb_data.quad)
 JOIN swerb_bes
 ON (swerb_bes.beid = swerb_data.beid)
 JOIN swerb_departs_data
 ON (swerb_departs_data.did = swerb_bes.did)
 LEFT OUTER JOIN swerb_departs_gps
 ON (swerb_departs_gps.did = swerb_bes.did)
 LEFT OUTER JOIN swerb_loc_data
 ON (swerb_loc_data.swid = swerb_data.swid)
 LEFT OUTER JOIN adcodes
 ON (adcodes.adcode = swerb_loc_data.adcode)
 LEFT OUTER JOIN swerb_loc_gps
 ON (swerb_loc_gps.swid = swerb_loc_data.swid);
Figure 74: Entity Relationship Diagram of the SWERB View
3.28 The SWERB_DEPARTS view

```
SELECT swerb_departs_data.did AS did,
      swerb_departs_data.date AS date,
      swerb_departs_data.time AS time,
      ST_X(swerb_departs_gps.xyloc) AS x,
      ST_Y(swerb_departs_gps.xyloc) AS y,
      swerb_departs_gps.altitude AS altitude,
      swerb_departs_gps.pdop AS pdop,
      swerb_departs_gps.accuracy AS accuracy,
      swerb_departs_gps.gps AS gps
FROM swerb_departs_data
  LEFT OUTER JOIN swerb_departs_gps
    ON (swerb_departs_gps.did = swerb_departs_data.did);
```

Figure 75: Query Defining the SWERB_DEPARTS View

Figure 76: Entity Relationship Diagram of the SWERB_DEPARTS View

3.29 The SWERB_LOC_GPS_XY view

```
SELECT swerb_loc_gps.swid AS swid,
      ST_X(swerb_loc_gps.xyloc) AS x,
      ST_Y(swerb_loc_gps.xyloc) AS y,
      swerb_loc_gps.altitude AS altitude,
      swerb_loc_gps.pdop AS pdop,
      swerb_loc_gps.accuracy AS accuracy,
      swerb_loc_gps.gps_datetime AS gps_datetime,
      swerb_loc_gps.garmincode AS garmincode
FROM swerb_loc_gps;
```

Figure 77: Query Defining the SWERB_LOC_GPS_XY View
3.30 The SWERB_LOCS view

```
SELECT swerb_loc_data.swid AS swid,
      swerb_loc_data.loc AS loc,
      swerb_loc_data.adcode AS adcode,
      adcodes.adn AS adn,
      swerb_loc_data.loc_status AS loc_status,
      swerb_loc_data.adtime AS time
FROM swerb_loc_data
JOIN adcodes ON (adcodes.adcode = swerb_loc_data.adcode);
```

Figure 79: Query Defining the SWERB_LOCS View

Figure 80: Entity Relationship Diagram of the SWERB_LOCS View
3.31 The SWERB_UPLOAD view

SELECT NULL::TEXT AS header
 , NULL::TEXT AS name
 , NULL::TEXT AS description
 , NULL::TEXT AS type
 , NULL::TEXT AS position
 , NULL::TEXT AS altitude
 , NULL::TEXT AS depth
 , NULL::TEXT AS proximity
 , NULL::TEXT AS display_mode
 , NULL::TEXT AS color
 , NULL::TEXT AS symbol
 , NULL::TEXT AS facility
 , NULL::TEXT AS city
 , NULL::TEXT AS state
 , NULL::TEXT AS country
 , NULL::TEXT AS pdop
 , NULL::TEXT AS accuracy
 , NULL::TEXT AS quad
 , NULL::TEXT AS date
 , NULL::TEXT AS timeest
 , NULL::TEXT AS source
 , NULL::TEXT AS lone_animal
 , NULL::TEXT AS is_effort
 , NULL::BOOLEAN AS secondary_ad
 , NULL::TEXT AS notes
WHERE _raise_babase_exception(
 'Cannot select SWERB_UPLOAD'
 || ': The only use of the SWERB_UPLOAD view is to insert'
 || ' new data into the SWERB portion of babase');

Figure 81: Query Defining the SWERB_UPLOAD View

The SWERB_UPLOAD view is used only to insert data into the SWERB portion of Babase. Since it cannot be queried and the semantics of the uploaded file varies by line it has no ER diagram.

Figure 82: Entity Relationship Diagram of the SWERB_UPLOAD View

3.32 The ULNA_STATS View

SELECT ulnas.dartid AS dartid
 , count(*) AS ulsamps
 , avg(ulnas.ullength) AS ullength_mean
 , stddev(ulnas.ullength) AS ullength_stddev
 , avg(ulnas.ulunadjusted) AS ulunadjusted_mean
 , stddev(ulnas.ulunadjusted) AS ulunadjusted_stddev
FROM ulnas
GROUP BY ulnas.dartid;

Figure 83: Query Defining the ULNA_STATS View
Figure 84: Entity Relationship Diagram of the ULNA_STATS View
3.33 The TESTES_ARC_STATS View

SELECT testesdartids.dartid AS dartid
 , testesllength.testllengthsamp AS testllengthsamp
 , testesllength.testllength_mean AS testllength_mean
 , testesllength.testllength_stddev AS testllength_stddev
 , testeslwidth.testlwidthsamp AS testlwidthsamp
 , testeslwidth.testlwidth_mean AS testlwidth_mean
 , testeslwidth.testlwidth_stddev AS testlwidth_stddev
 , testesrlength.testrlengthsamp AS testrlengthsamp
 , testesrlength.testrlength_mean AS testrlength_mean
 , testesrlength.testrlength_stddev AS testrlength_stddev
 , testesrwidth.testrwidthsamp AS testrwidthsamp
 , testesrwidth.testrwidth_mean AS testrwidth_mean
 , testesrwidth.testrwidth_stddev AS testrwidth_stddev
FROM (SELECT testes_arc.dartid
 FROM testes_arc
 GROUP BY testes_arc.dartid)
AS testesdartids
LEFT OUTER JOIN
(SELECT testes_arc.dartid AS llengthdartid
 , count(*) AS testllengthsamp
 , avg(testes_arc.testlength) AS testllength_mean
 , stddev(testes_arc.testlength) AS testllength_stddev
FROM testes_arc
WHERE testes_arc.testside = ‘L’
 AND testes_arc.testlength IS NOT NULL
GROUP BY testes_arc.dartid)
AS testesllength
ON testesllength.llengthdartid = testesdartids.dartid
LEFT OUTER JOIN
(SELECT testes_arc.dartid AS lwidthdartid
 , count(*) AS testlwidthsamp
 , avg(testes_arc.testwidth) AS testlwidth_mean
 , stddev(testes_arc.testwidth) AS testlwidth_stddev
FROM testes_arc
WHERE testes_arc.testside = ‘L’
 AND testes_arc.testwidth IS NOT NULL
GROUP BY testes_arc.dartid)
AS testeslwidth
ON testeslwidth.lwidthdartid = testesdartids.dartid
LEFT OUTER JOIN
(SELECT testes_arc.dartid AS rlengthdartid
 , count(*) AS testrlengthsamp
 , avg(testes_arc.testlength) AS testrlength_mean
 , stddev(testes_arc.testlength) AS testrlength_stddev
FROM testes_arc
WHERE testes_arc.testside = ‘R’
 AND testes_arc.testlength IS NOT NULL
GROUP BY testes_arc.dartid)
AS testesrlength
ON testesrlength.rlengthdartid = testesdartids.dartid
LEFT OUTER JOIN
(SELECT testes_arc.dartid AS rwidthdartid
 , count(*) AS testrwidthsamp
 , avg(testes_arc.testwidth) AS testrwidth_mean
 , stddev(testes_arc.testwidth) AS testrwidth_stddev
FROM testes_arc
WHERE testes_arc.testside = ‘R’
 AND testes_arc.testwidth IS NOT NULL
GROUP BY testes_arc.dartid)
AS testesrwidth
ON testesrwidth.rwidthdartid = testesdartids.dartid;
Figure 86: Entity Relationship Diagram of the TESTES_ARC_STATS View
3.34 The TESTES_DIAM_STATS View

```sql
SELECT testesdartids.dartid AS dartid,
    testeslwidth.testlwidthsamps AS testlwidthsamps,
    testeslwidth.testlwidth_mean AS testlwidth_mean,
    testeslwidth.testlwidth_stddev AS testlwidth_stddev,
    testesrlength.testrlengthsamps AS testrlengthsamps,
    testesrlength.testrlength_mean AS testrlength_mean,
    testesrlength.testrlength_stddev AS testrlength_stddev
FROM (SELECT testes_diam.dartid
    FROM testes_diam
    GROUP BY testes_diam.dartid)
AS testesdartids
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS llengthdartid,
        count(*) AS testllengthsamps,
        avg(testes_diam.testlength) AS testllength_mean,
        stddev(testes_diam.testlength) AS testllength_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'L'
    AND testes_diam.testlength IS NOT NULL
    GROUP BY testes_diam.dartid)
AS testesllength
ON testesllength.llengthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS lwidthdartid,
        count(*) AS testlwidthsamps,
        avg(testes_diam.testwidth) AS testlwidth_mean,
        stddev(testes_diam.testwidth) AS testlwidth_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'L'
    AND testes_diam.testwidth IS NOT NULL
    GROUP BY testes_diam.dartid)
AS testeslwidth
ON testeslwidth.lwidthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS rlengthdartid,
        count(*) AS testrlengthsamps,
        avg(testes_diam.testlength) AS testrlength_mean,
        stddev(testes_diam.testlength) AS testrlength_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'R'
    AND testes_diam.testlength IS NOT NULL
    GROUP BY testes_diam.dartid)
AS testesrlength
ON testesrlength.rlengthdartid = testesdartids.dartid
LEFT OUTER JOIN
    (SELECT testes_diam.dartid AS rwidthdartid,
        count(*) AS testrwidthsamps,
        avg(testes_diam.testwidth) AS testrwidth_mean,
        stddev(testes_diam.testwidth) AS testrwidth_stddev
    FROM testes_diam
    WHERE testes_diam.testside = 'R'
    AND testes_diam.testwidth IS NOT NULL
    GROUP BY testes_diam.dartid)
AS testesrwidth
ON testesrwidth.rwidthdartid = testesdartids.dartid;
```

Figure 87: Query Defining the TESTES_DIAM_STATS View
Figure 88: Entity Relationship Diagram of the TESTES_DIAM_STATS View
3.35 The WP_DETAILS_AFFECTEDPARTS View

```sql
SELECT wp_details.wpdid AS wpdid,
      wp_reports.wprid AS wprid,
      wp_reports.wid AS wid,
      wp_details.woundpathcode AS woundpathcode,
      wp_details.cluster AS cluster,
      wp_details.maxdimension AS maxdimension,
      wp_details.impairslocomotion AS impairslocomotion,
      wp_details.infectionsigns AS infectionsigns,
      wp_details.notes AS detailnotes,
      wp_affectedparts.wpaid AS wpaid,
      wp_affectedparts.wpdid AS bodypart_wpdid,
      wp_affectedparts.bodypart AS bodypart,
      bodyparts.bodyside AS bodyside,
      bodyparts.innerouter AS innerouter,
      bodyparts.bodyregion AS bodyregion,
      wp_affectedparts.quantity_affecting_part AS quantity_affecting_part
FROM wp_reports
JOIN wp_details
  ON wp_details.wprid = wp_reports.wprid
LEFT JOIN wp_affectedparts
  ON wp_affectedparts.wpdid = wp_details.wpdid
LEFT JOIN bodyparts
  ON bodyparts.bpid = wp_affectedparts.bodypart;
```

Figure 89: Query Defining the WP_DETAILS_AFFECTEDPARTS View

Figure 90: Entity Relationship Diagram of the WP_DETAILS_AFFECTEDPARTS View
3.36 The WP_HEALS View

WITH concatObservers AS (SELECT wprid, string_agg(observer, '/') ORDER BY wpoid) AS observers
FROM wp_observers
GROUP BY wprid

SELECT wp_reports.wprid AS wprid,
 wp_reports.wid AS wid,
 wp_reports.date AS reportdate,
 wp_reports.time AS reporttime,
 concatObservers.observers AS observers,
 wpReports.sname AS sname,
 wpReports.grp AS grp,
 wpReports.observercomments AS observercomments,
 wpReports.reportstate AS reportstate,
 wp_details.wpdid AS wpdid,
 wp_details.woundpathcode AS woundpathcode,
 wp_details.cluster AS cluster,
 wp_details.maxdimension AS maxdimension,
 wp_details.impairslocomotion AS impairslocomotion,
 wp_details.infectionsigns AS infectionsigns,
 wp_details.notes AS detailnotes,
 wp_affectedparts.wpaid AS wpaid,
 wp_affectedparts.bodypart AS bodypart,
 bodyparts.bodyside AS bodyside,
 bodyparts.innerouter AS innerouter,
 bodyparts.bodyregion AS bodyregion,
 wp_affectedparts.quantity_affecting_part AS quantity_affecting_part,
 wp_healupdates.wphid AS wphid,
 wp_healupdates.date AS healdate,
 wp_healupdates.healstatus AS healstatus,
 wp_healupdates.notes AS healnotes
FROM wp_healupdates
LEFT JOIN wp_affectedparts
 ON wp_affectedparts.wpaid = wp_healupdates.wpaid
LEFT JOIN bodyparts
 ON bodyparts.bpid = wp_affectedparts.bodypart
LEFT JOIN wp_details
 ON wp_details.wpdid = COALESCE(wp_affectedparts.wpdid, wp_healupdates.wpdid)
LEFT JOIN wp_reports
 ON wp_reports.wprid = COALESCE(wp_details.wprid, wp_healupdates.wprid)
LEFT JOIN concatObservers
 ON concatObservers.wprid = wp_reports.wprid;

Figure 91: Query Defining the WP_HEALS View
Figure 92: Entity Relationship Diagram of the WP_HEALS View, Overall
Figure 93: Entity Relationship Diagram of the WP_HEALS View for rows with an update to a wound/pathology report
Figure 94: Entity Relationship Diagram of the WP_HEALS View for rows with an update to a wound/pathology cluster
Figure 95: Entity Relationship Diagram of the WP_HEALS View for rows with an update to an affected body part
3.37 The WP_REPORTS_OBSERVERS View

WITH concatObservers AS (SELECT wprid, string_agg(observer, '/') ORDER BY wpoid) AS observers FROM wp_observers GROUP BY wprid)

SELECT wp_reports.wprid AS wprid, wp_reports.wid AS wid, wp_reports.date AS date, wp_reports.time AS time, concatObservers.observers AS observers, wp_reports.sname AS sname, wp_reports.grp AS grp, wp_reports.observercomments AS observercomments, wp_reports.reportstate AS reportstate FROM wp_reports LEFT JOIN concatObservers ON concatObservers.wprid = wp_reports.wprid;

Figure 96: Query Defining the WP_REPORTS_OBSERVERS View

<table>
<thead>
<tr>
<th>WP_REPORTS</th>
<th>CONCAT_OBSERVERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPRId (WPRId)</td>
<td></td>
</tr>
<tr>
<td>Wid (Wid)</td>
<td></td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
</tr>
<tr>
<td>Time (Time)</td>
<td></td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td></td>
</tr>
<tr>
<td>Grp (Grp)</td>
<td></td>
</tr>
<tr>
<td>ObserverComments (ObserverComments)</td>
<td></td>
</tr>
<tr>
<td>ReportState* (ReportState)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 97: Entity Relationship Diagram of the WP_REPORTS_OBSERVERS View

* CONCAT_OBSERVERS is a subquery from WP_OBSERVERS, in which all Observer rows for a WPRId are concatenated (separated by a "/") into a single string. It does not appear anywhere as an independent entity.

4 Views Which Add Gid To Tables

In addition to the above views there are a number of views which produce the group of a referenced individual as of a pertinent date. These views are all named after the table from which they are derived, with the addition of the suffixed _GRP. They are nearly identical to the table from which they derive, differing only by the addition of a column named Grp.

The only operation allowed on these views is SELECT. INSERT, UPDATE, and DELETE are not allowed.
4.1 The BIRTH_GRP View

```
SELECT biograph.*, members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
    AND members.date = CAST(biograph.birth AS DATE);
```

Figure 98: Query Defining the BIRTH_GRP View

4.2 The ENTRYDATE_GRP View

```
SELECT biograph.*, members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
    AND members.date = CAST(biograph.entrydate AS DATE);
```

Figure 100: Query Defining the ENTRYDATE_GRP View
4.3 The STATDATE_GRP View

```sql
SELECT biograph.*, members.grp AS grp
FROM members, biograph
WHERE members.sname = biograph.sname
  AND members.date = CAST(biograph.statdate AS DATE);
```

Figure 102: Query Defining the STATDATE_GRP View

<table>
<thead>
<tr>
<th>BIOGRAPH</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Statdate (Statdate)</td>
<td>Date (Statdate)</td>
</tr>
<tr>
<td>Individual in question</td>
<td></td>
</tr>
<tr>
<td>Date in question</td>
<td></td>
</tr>
<tr>
<td>Remainder of columns</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>
in BIOGRAPH....

Figure 103: Entity Relationship Diagram of the STATDATE_GRP View

4.4 The CONSORTDATES_GRP View

```sql
SELECT consortdates.*, members.grp AS grp
FROM members, consortdates
WHERE members.sname = consortdates.sname
  AND members.date = CAST(consortdates.consorted AS DATE);
```

Figure 104: Query Defining the CONSORTDATES_GRP View

<table>
<thead>
<tr>
<th>CONSORTDATES</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Consorted (Consorted)</td>
<td>Date (Consorted)</td>
</tr>
<tr>
<td>Individual in question</td>
<td></td>
</tr>
<tr>
<td>Date in question</td>
<td></td>
</tr>
<tr>
<td>Remainder of columns</td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>
in CONSORTDATES....

Figure 105: Entity Relationship Diagram of the CONSORTDATES_GRP View
4.5 The CYCGAPDAYS_GRP View

```sql
SELECT cycgapdays.*
    , members.grp AS grp
FROM members, cycgapdays
WHERE members.sname = cycgapdays.sname
    AND members.date = CAST(cycgapdays.date AS DATE);
```

Figure 106: Query Defining the CYCGAPDAYS_GRP View

<table>
<thead>
<tr>
<th>CYCGAPDAYS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenid (Cenid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in CYCGAPDAYS....</td>
<td></td>
</tr>
</tbody>
</table>

Date in question

Individual in question

4.6 The CYCGAPS_GRP View

```sql
SELECT cycgaps.*
    , members.grp AS grp
FROM members, cycgaps
WHERE members.sname = cycgaps.sname
    AND members.date = CAST(cycgaps.date AS DATE);
```

Figure 108: Query Defining the CYCGAPS_GRP View

<table>
<thead>
<tr>
<th>CYCGAPS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gapid (Gapid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in CYCGAPS....</td>
<td></td>
</tr>
</tbody>
</table>

Date in question

Individual in question

Figure 109: Entity Relationship Diagram of the CYCGAPS_GRP View
4.7 The CYCSTATS_GRP View

SELECT cycstats.*
 , members.grp AS grp
FROM members, cycstats
WHERE members.sname = cycstats.sname
 AND members.date = CAST(cycstats.date AS DATE);

Figure 110: Query Defining the CYCSTATS_GRP View

<table>
<thead>
<tr>
<th>CYCSTATS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSid (CSid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in CYCSTATS....</td>
<td></td>
</tr>
<tr>
<td>Individual in question</td>
<td>Date in question</td>
</tr>
</tbody>
</table>

Figure 111: Entity Relationship Diagram of the CYCSTATS_GRP View

4.8 The DARTINGS_GRP View

SELECT dartings.*
 , members.grp AS grp
FROM members, dartings
WHERE members.sname = dartings.sname
 AND members.date = CAST(dartings.date AS DATE);

Figure 112: Query Defining the DARTINGS_GRP View

<table>
<thead>
<tr>
<th>DARTINGS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dartid (Dartid)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Dartdaytime)</td>
</tr>
<tr>
<td>Dartdaytime (Dartdaytime)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in DARTINGS....</td>
<td></td>
</tr>
<tr>
<td>Individual in question</td>
<td>Date in question</td>
</tr>
</tbody>
</table>

Figure 113: Entity Relationship Diagram of the DARTINGS_GRP View
4.9 The DISPERSEDATES_GRP View

SELECT dispersedates.*
 , members.grp AS grp
FROM members, dispersedates
WHERE members.sname = dispersedates.sname
 AND members.date = CAST(dispersedates.dispersed AS DATE);

Figure 114: Query Defining the DISPERSEDATES_GRP View

<table>
<thead>
<tr>
<th>DISPERSEDATES</th>
<th>Individual in question</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td></td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Dispersed (Dispersed)</td>
<td></td>
<td>Date (Dispersed)</td>
</tr>
<tr>
<td>Remainder of columns</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>
in DISPERSEDATES.... |

Figure 115: Entity Relationship Diagram of the DISPERSEDATES_GRP View

4.10 The MATUREDATES_GRP View

SELECT maturedates.*
 , members.grp AS grp
FROM members, maturedates
WHERE members.sname = maturedates.sname
 AND members.date = CAST(maturedates.matured AS DATE);

Figure 116: Query Defining the MATUREDATES_GRP View

<table>
<thead>
<tr>
<th>MATUREDATES</th>
<th>Individual in question</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td></td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Matured (Matured)</td>
<td></td>
<td>Date (Matured)</td>
</tr>
<tr>
<td>Remainder of columns</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>
in MATUREDATES.... |

Figure 117: Entity Relationship Diagram of the MATUREDATES_GRP View
4.11 The MDINTERVALS_GRP View

SELECT mdintervals.*
 , members.grp AS grp
FROM members, mdintervals
WHERE members.sname = mdintervals.sname
 AND members.date = CAST(mdintervals.date AS DATE);

Figure 118: Query Defining the MDINTERVALS_GRP View

<table>
<thead>
<tr>
<th>MDINTERVALS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDId (MDId)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in MDINTERVALS</td>
<td>Date in question</td>
</tr>
<tr>
<td></td>
<td>Individual in question</td>
</tr>
</tbody>
</table>

Figure 119: Entity Relationship Diagram of the MDINTERVALS_GRP View

4.12 The MMINTERVALS_GRP View

SELECT mmintervals.*
 , members.grp AS grp
FROM members, mmintervals
WHERE members.sname = mmintervals.sname
 AND members.date = CAST(mmintervals.date AS DATE);

Figure 120: Query Defining the MMINTERVALS_GRP View

<table>
<thead>
<tr>
<th>MMINTERVALS</th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMId (MMId)</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in MMINTERVALS</td>
<td>Date in question</td>
</tr>
<tr>
<td></td>
<td>Individual in question</td>
</tr>
</tbody>
</table>

Figure 121: Entity Relationship Diagram of the MMINTERVALS_GRP View
4.13 The PCSKINS_GRP View

SELECT pcskins.*
 , members.grp AS grp
FROM members, pcskins
WHERE members.sname = pcskins.sname
 AND members.date = CAST(pcskins.date AS DATE);

Figure 122: Query Defining the PCSKINS_GRP View

<table>
<thead>
<tr>
<th>PCSKINS</th>
<th></th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCSId (PCSid)</td>
<td>Individual in question</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Sname (Sname)</td>
<td></td>
<td>Date (Date)</td>
</tr>
<tr>
<td>Date (Date)</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
<tr>
<td>Remainder of columns in PCSKINS....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 123: Entity Relationship Diagram of the PCSKINS_GRP View

4.14 The RANKDATES_GRP View

SELECT rankdates.*
 , members.grp AS grp
FROM members, rankdates
WHERE members.sname = rankdates.sname
 AND members.date = CAST(rankdates.ranked AS DATE);

Figure 124: Query Defining the RANKDATES_GRP View

<table>
<thead>
<tr>
<th>RANKDATES</th>
<th></th>
<th>MEMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sname (Sname)</td>
<td>Individual in question</td>
<td>Sname (Sname)</td>
</tr>
<tr>
<td>Ranked (Ranked)</td>
<td></td>
<td>Date (Ranked)</td>
</tr>
<tr>
<td>Remainder of columns in RANKDATES....</td>
<td></td>
<td>Grp (Grp)</td>
</tr>
</tbody>
</table>

Figure 125: Entity Relationship Diagram of the RANKDATES_GRP View
4.15 The REPSTATS_GRP View

SELECT repstats.*
 , members.grp AS grp
FROM members, repstats
WHERE members.sname = repstats.sname
 AND members.date = CAST(repstats.date AS DATE);

Figure 126: Query Defining the REPSTATS_GRP View

Figure 127: Entity Relationship Diagram of the REPSTATS_GRP View